KTSPM Sahebraoji Buttepatil Mahavidyalaya, Rajgurunagar

Science Faculty

Academic Calendar 2022-23

Month	Tentative Dates	Description		
June	15 June 2022	Commencement of First term		
	15 June 2022	Meeting of teaching and non-teaching staff for planning for academic year		
	21 June 2022	Celebration of International Yoga Day		
	3 rd and 4 th week of June	Undergraduate Admission Process (First year)		
July	First week	Updation of BCUD and College Profile		
	Second week	Display of Various Committees		
	Third Week	Conduction of Univ Exam-2021-22		
August	First week	Commencement of lectures for FYBSc classes		
	15 th August 2022	Independence Day		
	3 rd and 4 th week	Commencement of UG practical		
September	First week	Commencement of lectures for SY and TY BSc classes		
		Celebration of Teacher's Day		
	Second week	Commencement of UG practical		
		Conduction od Avishkar-22		
		Conduction of Field Visit		
October	2 nd Oct 2022	Gandhi Jayanti		
	Second week	UG Internal Examinations		

	Third and Fourth Week	Diwali Vacation
November	First week	Term end meeting of teaching and non-teaching staff
	26 th November	Constitution of India day
December	First week	Commencement of Second Term
	Third and Fourth Week	Departmental Cultural, co curricular and extra and extra- curricular activities / annual Social gathering
January	Second week	Annual Social Gathering
	26th January 23	Republic Day
February	First week	Annual Prize Distribution
	Third and Fourth week	UG Internal Examinations
	28 th February	Science Day
March	Second and Third Week	UG Practical Examination FYBSc
April	-	UG Practical Examination SYBSc and TYBSC
May	1 st May 2023	Celebration of Maharashtra Din
	4th May 2023	Term end meeting
		End of Semester

Coordinator, IQAC Date : 1st July 2022 Principal

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR, TAL- KHED, DIST- PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN F. Y. B. SC. -MICROBIOLOGY: 2022-2023 Paper I:MB-111 Introduction to Microbial World Semester I

SR.	MONTH	TOPICS	TEACHER
NO			
Credit	SEPTEMBER	Amazing world of Microbiology	KDG
Ι		Development of microbiology as a discipline -	
		Discovery of microscope and Microorganisms (Anton	
		von Leeuwenhoek and Robert Hooke), Abiogenesis v/s	
		biogenesis (Aristotle's notion about spontaneous	
		generation, Francesco Redi's experiment, Louis	
		Pasteur's & Tyndall's experiments)	
	SEPTEMBER	Golden Era of Microbiology	KDG
	AND	Contributions of - Louis Pasteur (Fermentation, Rabies,	in o
	OCTOBER	Pasteurization and Cholera vaccine-fowl cholera	
		experiment) Robert Koch (Koch's Postulates, Germ	
		theory of disease, Tuberculosis and Cholera-isolation	
		and staining techniques of causative agent) Ferdinand	
		Cohn (Endospore discovery), Discovery of viruses	
		(TMV and Bacteriophages), River's Postulates	
		Contribution of Joseph Lister (antiseptic surgery), Paul	
		Ehrlich (Chemotherapy), Elie Metchnikoff	
		(Phagocytosis), Edward Jenner (Vaccination) and	
		Alexander Fleming (Penicillin) in establishment of	
		fields of medical microbiology and immunology,	
		Discovery of Streptomycin by Waksman	
		Contribution of Martinus W. Beijerinck (Enrichment	
		culture technique, Rhizobium), Sergei N. Winogradsky	
		(Nitrogen fixation and Chemo-lithotrophy) in the	
		development of the field of soil microbiology	
		Modern Era of MicrobiologyCarl Woese	
		classification based on 16S rRNA	
		Signification and Application of Human Microbiome,	
		Nano-biotechnology and Space Microbiology	
Credit	OCTOBER	Types of Microorganism and their differentiating	KDG
Π		characters	
		Prokaryotes, Eukaryotes, three domain and five	
		domain system of classification	
		Bacteria (Eubacteria and Archaebacteria)	
		Protozoa	

	Fungi	
	Algae	
NOVEMBER	Viruses, Viroids and Prions	KDG
	Actinomycetes	
	Beneficial and Harmful effects of microorganisms:	
	Medical Microbiology (Enlist diseases caused by	
	various microorganisms, vaccines and antibiotics)	
	Environmental Microbiology (Eutrophication, red	
	tide, Sewage treatment, bioremediation)	
DECEMBER	Food and Dairy Microbiology (Food spoilage, food	KDG
	borne diseases, Probiotics and fermented food)	
	Agriculture Microbiology (Plant diseases and	
	Biofertilizers and Bio-control agents)	
	Industrial Microbiology (Production of antibiotics,	
	enzymes, solvents and contaminants-bacteria and	
	phages)	
	Immunology (Normal flora, Three lines of defence)	
	ASSIGNMENT AND REVISION	

KAJAL D. GOKULE TEACHER

K.T.S.P. MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR, TAL - KHED, DIST- PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN F. Y. B. SC. -MICROBIOLOGY: 2022-2023 PAPER II: MB-112 BASIC TECHNIQUES IN MICROBIOLOGY SEMESTER I

SR. NO	MONTH	TOPICS	TEACHER
Credit I	SEPTEMBER	I. Units of measurement – Introduction to Modern SI units	AAI
	SEPTEMBER AND OCTOBER	 Microscopy: 1. Bright field microscopy: Electromagnetic spectrum of light Structure, working of and ray diagram of a compound light microscope; concepts of magnification, numerical aperture and resolving power. Types, ray diagram and functions of – condensers (Abbe and cardioid) eyepieces and objectives Concept of aberrations in lenses - spherical, chromatic, comma and astigmatism Principle, working and ray diagram of Phase contrast microscope Fluorescence Microscopy 	AAI
	OCTOBER	iii. Electron Microscopy – TEM, SEM II. Staining Techniques:	AAI
		 Definition of Stain; Types of stains (Basic and Acidic), Properties and role of Fixatives, Mordants, Decolourisers and Accentuators Monochrome staining and Negative (Relief) staining Differential staining - Gram staining and Acid-fast staining Special staining- Capsule, Cell wall, Spore, Flagella, Lipid granules, metachromatic granules 	
Credit II	NOVEMBER	 Sterilization and Disinfection 1. Sterilization Physical Agents - Heat, Radiation, Filtration Checking of efficiency of sterilization (Dry and Moist) – Biological and Chemical Indicators 	AAI
	DECEMBER	 2. Disinfection: • Chemical agents and their mode of action - 	AAI

 Aldehydes, Halogens, Quaternary ammonium compounds, Phenol and phenolic compounds, • Heavy metals, Alcohol, Dyes, Detergents and Ethylene oxide. • Characteristics of an ideal disinfectant • Checking of efficiency of disinfectant - Phenol Coefficient (Rideal–Walker method) 	
ASSIGNMENT AND REVISION	

ARTI A. INDAIS TEACHER

K.T.S.P. MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR, TAL- KHED, DIST- PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN S. Y. B. SC. -MICROBIOLOGY: 2022-2023 MB-231: MEDICAL MICROBIOLOGY AND IMMUNOLOGY (SEMESTER III) (2 CREDITS; 36 LECTURES)

SR. NO	MONTH	TOPICS	TEACHER
Credit I	SEPTEMBER	Medical Microbiology Definitions: Incubation period, Viability, Susceptibility, Pathogenicity	JCS
	SEPTEMBER AND OCTOBER	Virulence, Pathogenesis, Lab diagnosis, Epidemic, Sporadic, Endemic, Pandemic	JCS
		Study of following pathogens with respect to – Classification, Morphological, Cultural and Biochemical characters, Antigenic structure, Viability characteristics, Pathogenicity, Pathogenesis, Symptoms, Laboratory diagnosis, Epidemiology, Prophylaxis and Chemotherapy: Bacteria: a) <i>Escherichia coli</i> b) <i>Staphylococcus aureus</i> Fungi: a) <i>Candida</i> b) <i>Dermatophytes</i>	
	OCTOBER	Introduction to Chemotherapyii. Selective toxicity, Bioavailability, MIC, MBC, LD50iiii. Antagonism and synergism in drug administrationiiiiii. Antibiotic sensitivityiviv. Antibiotic misuse/antibiotic overusevv. Concept of drug resistance (e.g. MRSA, ESBL)	JCS
Credit II	NOVEMBER	Immunology Immunity: Definition, Types (Innate and acquired, active and passive, humoral and cell mediated Immunity: Definition, Types (Innate and acquired, active and passive, humoral and cell mediated Antigens and antibodies: definition and concept	JCS
	DECEMBER	Immunohematologyii. ABO and Rh blood group systemsiiii. Bombay blood groupiiiiii. Biochemistry of blood group substancesiviv. Inheritance of ABH antigensvv. Medico legal applications of blood groups	JCS

Active and Passive Immunization
i. Active Immunization -Whole organism vaccines a)
Attenuated vaccines
b) Inactivated Vaccines
ii. Passive Immunization
Transfer of preformed antibodies
i iii. Latest Immunization schedule in India
Immunohematology
vi i. ABO and Rh blood group systems
vii ii. Bombay blood group
viii iii. Biochemistry of blood group substances
ix iv. Inheritance of ABH antigens
x v. Medico legal applications of blood groups
Active and Passive Immunization
i. Active Immunization -Whole organism vaccines a)
Attenuated vaccines
b) Inactivated Vaccines
ii. Passive Immunization
Transfer of preformed antibodies
iii. Latest Immunization schedule in India
ASSIGNMENT AND REVISION

J. C. Shelar TEACHER

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR, TAL-KHED, DIST-PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN S. Y. B. SC. -MICROBIOLOGY: 2022-2023 MB-232: BACTERIAL PHYSIOLOGY AND FERMENTATION TECHNOLOGY [2 CREDITS; 36 LECTURES] SEMESTER III

SR.	MONTH	TOPICS	TEACHER
NO			
Credit I	SEPTEMBER	Enzymes i. Introduction to Enzymes: Properties of enzymes, Nature of active site, Structure of active site, commonly occurring amino acids at active site. Ribozymes, coenzymes, apoenzymes, prosthetic group and cofactors.	SPT
	SEPTEMBER AND OCTOBER	 ii. Nomenclature and classification as per IUB (upto class level iii. Models for catalysis— a) Lock and key b) Induced fit c) Transition state. iv. Effect of pH and temperature, substrate concentration and enzyme concentration, activators and inhibitors of enzyme 	SPT
	OCTOBER	Bacterial Physiologyi. Definitions of Metabolism, catabolism, anabolism,respiration andfermentationii. Metabolic pathways (with structures)a) Embden Meyerhof Parnas pathway (Glycolysis)b) Hexose monophosphate pathwayc) Entner Doudoroff pathwayd) Phosphoketolase pathway(Pentose and hexose)e) TCA cycle (with emphasis on amphibolism) andGlyoxylate by passf) Gluconeogenesis and its significance	SPT
Credit II	NOVEMBER	 Concept of fermentation technology i. Microbial biomass- based fermentation (Biofertilizer, biopesticide and Probiotics) ii. Production of Primary metabolites (Organic acids, amino acids, vitamins and enzymes) iii. Production of Secondary metabolites (Antibiotics) 	SPT

DECEMBER	 iv. Production of recombinant products (insulin and growth hormones) v. Production of Fermented food products (Cheese, yoghurt) vi. Microbial biotransformation (Steroid transformation) Strains of industrially important microorganisms: i. Desirable characteristics of industrial strain ii. Principles and methods of primary and secondary screening iii. Master, working and seed culture; development of inoculum iv. Preservation and maintenance of industrial strains. Design of a Fermenter (typical CSTR Continuous stirred Tank Reactor): Different parts and their working Monitoring of different fermentation parameters (Temperature, pH, aeration, agitation, foam) Types of fermentations: Batch, continuous and dual Media for industrial fermentations: Constituents of media (Carbon source, nitrogen source, amino acids, vitamins, minerals, water, buffers, antifoam agents, precursors, inhibitors and inducers) Contamination: Sources, precautions and consequences 	SPT
----------	---	-----

Sonakshi P. Takale TEACHER

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR, TAL- KHED, DIST- PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN T. Y. B. SC. -MICROBIOLOGY: 2022-2023 MB 351: MEDICAL MICROBIOLOGY- I [2 CREDITS; 36 LECTURES] SEMESTER V

SR. NO	MONTH	TOPICS	TEACHER
Credit I	SEPTEMBER	Introduction to infectious diseases and Epidemiology	AAI
	SEPTEMBER AND OCTOBER	 1. Introduction to infectious diseases of following human body systems:(Brief anatomy and Physiology, Diseases, Pathogens, common symptoms) a. Respiratory system b. Gastrointestinal system and liver c. Urogenital system d. Central nervous system 	AAI
	OCTOBER	 2. Epidemiology: a. Case control and cohort studies – Study design and application b. Principle and methods – Clinical trials of drugs and vaccines (Randomized control trials Concurrent parallel and crossover trials) 	AAI

Credit II	NOVEMBER	 c. Epidemiology of infectious diseases i. Sources and Reservoirs of Infection ii. Modes of Transmission of Infections iii. Disease Prevention and Control Measures, Vaccine-preventable bacterial diseases and nonvaccine-preventable bacterial diseases) 	AAI
		3. Study of following groups of bacterial pathogens: (With respect to- Classification and Biochemical characters, Antigenic structure, Viability characteristics, Pathogenicity, Pathogenesis, Symptoms, Laboratory diagnosis, Epidemiology, Prophylaxis and Chemotherapy): a. <i>Salmonella, Vibrio</i>	
	DECEMBER	 b. Streptococcus pneumoniae, Streptococcus pyogenes, Neisseriameningitidis and Neisseria gonorrhoeae c. Pseudomonas aeruginosa d. Treponema, Leptospira e. Clostridium tetani f. Mycobacterium tuberculosis and Mycobacterium leprae g. Rickettsial diseases - Scrub typhus, Spotted fevers 	AAI

ARTI A. INDAIS TEACHER

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR, TAL-KHED, DIST-PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN T. Y. B. SC. -MICROBIOLOGY: 2022-2023 MB-352 Immunology- I [2 CREDITS; 36 LECTURES] SEMESTER V

SR. NO	MONTH	TOPICS	TEACHER
Credit I	SEPTEMBER	Organs of immune system, Innate immunity, Antigen and Immunoglobulins 1. Organs of immune system: a. Primary lymphoid organs (Thymus and Bone Marrow): Thymus – structure, thymic education (positive and negative selection)	KDG
	SEPTEMBER AND OCTOBER	 Bone marrow –Structure and Negative selection b. Secondary lymphoid organs – structure and function of spleen and lymph node, mucous associated lymphoid tissue, lymphatic system and lymphcirculation 2. Innate immunity: Non-specific mechanisms of defense: Second line of defense: a. Humoral components: Defensins, pattern recognition proteins (PRP) and pathogen associated molecular patterns (PAMPs), complement, kinins, and acute phase reactants. b. Cellular components: Phagocytic cells – PMNL, macrophages (reticulo- endothelial cell system) and dendritic cells c. Phagocytosis (oxygen dependent and independent systems), Complement activation (Classical, Alternative and lectin pathway), Inflammation (cardinal signs, mediators, vascular and cellular changes, role of Toll-like receptors) 	KDG
	OCTOBER	3. Antigen: a. Factors affecting immunogenecity	KDG

		 b. Antigenic determinants, haptens and cross-reactivity, Carrier, Adjuvants c. Types of antigens: Thymus-dependent and thymus- independent antigens, Synthetic antigens, Soluble and particulate antigens, Autoantigens, Isoantigens 4. Immunoglobulins: a. Characteristic of domain structure, functions of light and heavy chain domainsand antigenic nature of immunoglobulin molecules b. Molecular basis of antibody diversity (kappa, lambda and heavy chain) 	
		Antigen- Antibody Interactions, Major	
		Histocompatibility Complex,	
		Transplantation and Immunity and Hybridoma	
a him	NOUTLOTT	Technology and Monoclonal Antibodies	
Credit II	NOVEMBER		KDG
		5. Antigen- Antibody Interactions:A. Principles of interactions: Antibody affinity and	
		avidity, ratio of antigen antibody, lattice hypothesis and	
		two stage theory, antigen antibody reactionkinetics	
		(dialysis equilibrium experiment)	
		B. Visualization of antigen antibody complexes:	
		a. Precipitation reactions: in fluid and in gel,	
		immunoelectrophoresis	
		b. Agglutination reactions: hemagglutination, bacterial	
		agglutination, passive agglutination and agglutination- inhibition	
		c. Immunofluorescence techniques: direct and indirect,	
		fluorescence-activated cell sorting (FACS)	
		d. Enzyme-linked immunosorbent assay (ELISA), biotin-	
		avidin system and enzyme-linked immune absorbent spot (ELISpot) assay	
		e. Radioimmunoassay RIA	
	DECEMBER		KDG
		6. Major Histocompatibility Complex:	
		a. Structure of MHC in man and mouse	
		b. Structure and functions of MHC class–I and class–II molecules	
		c. MHC antigen typing (microcytotoxicity and mixed	
		lymphocyte reaction)	
		7. Transplantation and Immunity;	
		a. Types of Grafts, Allograft rejection mechanisms	
		b. Prevention of allograft rejection	
		ASSIGNMENT AND REVISION	

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR,TAL-KHED,DIST-PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN T. Y. B. SC. -MICROBIOLOGY: 2022-2023 MB 353: Enzymology [2 CREDITS; 36 LECTURES] SEMESTER V

SR. NO	MONTH	TOPICS	TEACHER
Credit I	SEPTEMBER	1. Structure of enzymes: a. Methods to determine amino acid residues at active site (Physical method e.g. x-ray crystallography and chemical methods such as trapping of ES complex, use of inhibitors, use of pseudo- substrate,change of pH)	SPT
	SEPTEMBER AND OCTOBER	 b. Role of vitamins in metabolism: Occurrence, Structure and Biochemical functions of the following: Thiamine (Vitamin B1) and Thiamine Pyrophosphate Vitamin D 2. Enzyme assays: Principles of enzyme assays and calculation of enzyme unit, specific activity Enzymes assays with examples by: Spectrophotometric methods Radioisotope assay 	SPT
	OCTOBER	 3. Principles and Methods of Enzyme purification: a. Methods of cell fractionation b. Principles and methods of enzyme purification: i. Based on molecular size ii. Based on charge iii. Based on solubility differences iv. Based on specific binding property and selective adsorption c. Construction of enzyme purification chart 	SPT

Credit II	NOVEMBER	4. Enzyme Kinetics:	SPT
		a. Concept and use of initial velocity	
		b. Michaelis Menton equation for the initial velocity of	
		single substrate enzyme catalyzed reaction. Brigg's	
		Haldane modification of Michaelis Menton equation.	
		Michaelis Mentonplot, Lineweaver and Burk plot.	
		Definition with significance of Km, Ks, Vmax	
		5. Metabolic Regulations:	
		a. Enzyme compartmentalization at cellular level	
		b. Allosteric enzymes	
	DECEMBER	c. Feedback mechanisms	SPT
		d. Covalently modified regulatory enzymes	
		(Glycogenphosphorylase)	
		e. Proteolytic activation of zymogens	
		f. Isozymes - concept and examples	
		g. Multienzyme complex e.g. Pyruvate	
		dehydrogenasecomplex(PDH)	
		6. Immobilization of enzymes:	
		Concept, methods of immobilization and applications	
		ASSIGNMENT AND REVISION	

S. P. Takale TEACHER

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR, TAL-KHED, DIST-PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN T. Y. B. SC. -MICROBIOLOGY: 2022-2023 MB 354: Genetics I [2 CREDITS; 36 LECTURES] SEMESTER V

SR. NO	MONTH	TOPICS	TEACHER
Credit I	SEPTEMBER	 DNA Replication and Gene Expression 1. Process of prokaryotic DNA replication a. Single replicon b. Bidirectional movement of replication fork c. Ori C 	JCS
	SEPTEMBER AND OCTOBER	 d. Pre-priming and Priming reaction. e. DNA polymerases, DNA synthesis of leading, lagging strand Okazaki fragments. f. Termination- Ter sequence, Tus protein 2. Prokaryotic and Eukaryotic Transcription Transcription in Prokaryotes a. Structure of promoter b. Structure and function of RNA polymerase c. Steps of transcription: Initiation, Elongation and termination 	JCS
	OCTOBER	 ii. Transcription in eukaryotes with respect to protein coding Gene: a. Promoter, promoter proximal elements and enhancers b. Transcription regulatory proteins c. RNA polymerases d. Steps in transcription: Initiation, Elongation, Termination e. Post transcriptional modifications: 5' capping, 3' polyadenylation and introduction to RNA splicing 3. Regulation of transcription: Concept and components of operon: Lac operon: Inducible operon 	JCS

Credit II	NOVEMBER		JCS
		4. Translation in prokaryotes and eukaryotes	
		a. Structure and role of m-RNA, t-RNA and Ribosomes in	
		Translation	
		b. Role of Aminoacyl t-RNA synthetase in translation c. Steps in translation: Initiation, elongation, translocation	
		and termination of protein synthesis	
		d. Salient features of Eukaryotic translation	
		5. Gene transfer by Transformation	
		a. Discovery of Transformation	
		b. Natural transformation Systems-	
		Streptococcus pneumoniae and Haemophilus influenzae.	
		c. Factors affecting transformation	
		i. Competence development	
		ii. Size of DNA	
		iii. Concentration of DNA	
	DECEMBER	6. Gene transfer by Conjugation	JCS
		a. Discovery of Conjugation,	
		b. Properties of F plasmid, F+, F-, Hfr and F' strains	
		c. Process of conjugation between F_+ and F , Hfr and F , F 'and F	
		7. Gene transfer by Transduction	
		a. Discovery of Transduction	
		b. Generalized transduction mediated by P22	
		c. Specialized transduction mediated by lambda phage	
		8. An introduction to Gene mapping	
		a. Gene linkage and concept of genetic recombination b. Recombination mapping: Map unit, recombination	
		frequency	
		c. Mapping of genes by co-transformation	
		d. Mapping of genes by co-transduction	
		e. Mapping by interrupted mating experiment	
		f. Numerical problems based on co-transformation, co-	
		transductionand interrupted mating	
		ASSIGNMENT AND REVISION	

J. C. Shelar TEACHER

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR, TAL-KHED, DIST-PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN T. Y. B. SC. -MICROBIOLOGY: 2022-2023 MB 355 Fermentation Technology– I [2 CREDITS; 36 LECTURES] SEMESTER V

SR.	MONTH	TOPICS	TEACHER
NO			
Credit I	SEPTEMBER	 Upstream processes of fermentations 1. Strain Improvement: a. Objectives of strain improvement b. Methods for strain improvement: i. Types of mutants used in strain improvement (altered cell permeability mutants, auxotrophs, analogue resistant mutants, revertants) ii. Selection of different types of mutants (replica plate method, filtration enrichment, penicillin enrichment method, gradient 	JCS
	SEPTEMBER	platetechnique) iii. Application of rDNA technology (significance, technique for commercial recombinant products like insulin)	JCS
	AND OCTOBER	 2. Media optimization a. Objectives of media optimization b. Methods of media optimization: i. Classical approach – One factor at a time, Full factorial design ii. Plackett and Burman Design (with example) (Numerical problems of PBD can be discussed using software) iii. Response Surface Methodology (RSM) 3. Sterilization of Media: a. Methods of sterilization b. Batch sterilization and Continuous sterilization (direct and indirect methods) c. Concept and derivation of Del factor d. Filter sterilization of liquid media 	
	OCTOBER	4. Scale-up and Scale-down:a. Objectives of scale-upb. Levels of fermentation (laboratory, pilot-plant and	JCS

Credit II	NOVEMBER	production level – flow sheet to explain scale up) c. Criteria of scale-up for critical parameters [Aeration (kLa Volumetric Mass transfer coefficient), Agitation (P/V ratio, NRe Reynolds number, Np Power number, NFr Froudes number), Sterilization and broth rheology (Newtonian and non Newtonian fluids - bacterial and mycelia fungal fermentations)] d. Scale-down (example of any one commercial fermentation)	JCS
		 5. Downstream processing of fermentation products: (method, principle, types, examples of fermentations, factors affecting, merits and demerits at large scale operation) a. Cell disruption methods b. Filtration c. Centrifugation d. Liquid-liquid extraction e. Distillation f. Drying 6. Quality assurance of fermentation products (as per IP, USP) a. Methods of detection and Quantification of the fermentation product: physicochemical, biological and enzymatic methods b. Sterility testing (direct inoculation method, membrane filtration method) c. Bioburden test 	303
	DECEMBER	 d. Microbial limit test e. Pyrogen testing: Endotoxin detection (LAL test) f. Ames test and modified Ames test g. Toxicity testing (Acute toxicity) h. Shelf life determination 7. Fermentation economics: a. Contribution of various expense heads to a process (Recurringand nonrecurring expenditures) citing any suitable example. b. Introduction to Intellectual Property Rights – Types of IPR (patenting in fermentation industry) c. Concept of validation(significance of SOPs) ASSIGNMENT AND REVISION 	JCS

J. C. Shelar. TEACHER

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA, RAJGURUNAGAR,TAL-KHED,DIST-PUNE

DEPARTMENT OF MICROBIOLOGY

TEACHING PLAN T. Y. B. SC. -MICROBIOLOGY: 2022-2023 MB 356: AGRICULTURAL MICROBIOLOGY [2 CREDITS; 36 LECTURES] SEMESTER V

SR. NO	MONTH	TOPICS	TEACHER
Credit I	SEPTEMBER	Plant Pathology	SPT
		 Plant growth improvement and Stages in development of a disease a. Plant growth improvement with respect to disease resistance 	
		b. Stages in development of a disease: Infection, invasion, colonization, dissemination of pathogens and perennation	
	SEPTEMBER AND OCTOBER	 2. Classification of disease based on symptoms (with one example of the following): Canker, Downy mildew, Mosaic 3. Plant disease epidemiology Concepts of monocyclic, polycyclic and polyetic diseases withone example of each, disease triangle and forecasting of plant diseases. 4. Methods of plant disease control Eradication Chemical control Biological control (employing bacterial and fungal cultures) Integrated pest management Genetic engineering for disease resistant plants 	SPT
	OCTOBER	Microorganisms in sustainable Agriculture and tools in plant genetic engineering5. Microorganisms in sustainable Agriculture a. Soil Micro biome (plant Micro biome)	SPT
		 b. Concept, Composition, functioning and methods to stu i. Conservation of soil health: Role of microorganisms in ii. Phytonutrient availability by soil microorganisms Mec diazotrophy, Phosphate solubilization, Potassium mobiliz micronutrient availability 	soil health hanism of

		 iii. Biofilm in plant surfaces, Biofilm formation; Biofilm i and rhizosphere, Examples of plant- microbe interactions Biotechnological applications of plant biofilms 	• •
Credit II	NOVEMBER	6 Microorganisms in plant genetic engineering:	SPT
		a. Concept of GM crops (Transgenic crops) w.r.t. to edible vaccines, insecticide resistance, herbicide resistance,	
		improved varieties, new variants, disease resistance	
		b. Tools and techniques:	
	DECEMBER	i. Microorganisms as tools in plant genetic engineering	SPT
		(Shuttle vectors) ii Technology of BT resistant crops	
		iii.Concept of edible vaccines	
		iv Technique of use of plant viruses in genetic engineering	
		c. RNAi Technology and antisense RNA technology in	
		disease resistant plant varieties	
		ASSIGNMENT AND REVISION	

S. P. Takale TEACHER

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 SEMESTER II F.Y.B.Sc.

Subject – MB 121: Bacterial Cell and Biochemistry

Teacher Name – Prof. K.D.Gokule

Month	Unit	Topics
March 2023	1	 1. Bacterial Cytology Microbial cell size, shape and arrangements 2. Structure, chemical composition and functions of the following components in bacterial cell: a. Cell wall (Gram positive, Gram negative) b. Concept of Mycoplasma, Spheroplast, protoplast, L-form c. Cell membrane d. Endospore (spore formation and stages of sporulation) e. Capsule f. Flagella g. Fimbriae and Pili h. Ribosomes i. Chromosomal & extra-chromosomal material j. Cell inclusions (Gas vesicles, carboxysomes, PHB granules, metachromatic granules, glycogen bodies, starch granules, magnetosomes, sulfur granules, chlorosomes)
March – April 2023	2	 3. Chemical Basis of Microbiology a. Atom, Biomolecules, types of bonds (covalent, coordinate bond, non-covalent) and linkages (ester, phosphodiester, peptide, glycosidic) b. Chemistry of Biomolecules: Structure, organization and functions 4. Carbohydrates: Definition, classification a. Monosaccharides: Classification based on aldehyde and ketone groups; structure of Ribose, Deoxyribose, Glucose, Galactose and Fructose. b. Disaccharides: Glyosidic bond, structure of lactose and sucrose. c. Polysaccharides: Structure and types

April – May 2023	3	
	·	5. Lipids: Definition, classification
		a. Simple lipids – Triglycerides, Fats and oils, waxes.
		b. Compound lipids – Phospholipid, Glycolipids
		c. Derived lipids – Steroids, Cholesterol
		6. Proteins: Definition, classification
		a. General structure of amino acids, peptide bond.
		b. Types of amino acids based on R group
		c. Structural levels of proteins: primary, secondary, tertiary and quaternary
		d. Study of Hemoglobin, flagellin and cytoskeletal proteins
		7. Nucleic acids: Definition, classification
		a. DNA – structure and composition
		b. RNA – Types (m-RNA, t-RNA, r-RNA), structure and
		functions.
		8. Classification of Bacteria:
		Introduction to Bergey's Manual of Determinative and
		Systemic Bacteriology
		9. Classification of Viruses: ICTV nomenclature
May 2023	4	
		Revision And Assignment

Prof. K.D.Gokule

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 SEMESTER II

F.Y.B.Sc.

Subject – MB 122: Microbial cultivation and growth Teacher Name – Prof. A.A.Indais

Month	Unit	Topics
March 2023	1	1. Cultivation of Microorganisms:
		a. Nutritional requirements and nutritional classification.
		b. Design and preparation of media: Common ingredients of
		media and types of media.
		c. Methods for cultivating photosynthetic, extremophilic and
		chemo-lithotrophic bacteria, anaerobic bacteria, algae, fungi, actinomycetes and viruses.
		d. Concept of Enrichment, Pure Culture, Isolation of culture
		by streak plate, pour plate, spread plate.
		e. Maintenance of bacterial and fungal cultures using
		different techniques.
		f. Culture collection centres and their role.
		g. Requirements and guidelines of National Biodiversity
		Authority for culture collection centres.

March – April 2023	2	 2. Bacterial growth: a. Kinetics of bacterial growth (Exponential growth model) b. Growth curve and Generation time c. Diauxic growth d. Measurement of bacterial growth- Methods of enumeration: e. Microscopic methods (Direct microscopic count, counting cells using improved Neubauer, Petroff-Hausser's chamber) f. Plate counts (Total viable count)
April – May 2023	3	 g. Turbidometric methods (including Nephelometry) h. Estimation of biomass (Dry mass, Packed cell volume) i. Chemical methods (Cell carbon and nitrogen estimation) j. Factors affecting bacterial growth [pH, Temperature, Solute Concentration (Salt and Sugar)] and Heavy metals
May 2023	4	Revision And Assignment

Prof. A.A.Indais

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 SEMESTER IV S.Y.B.Sc.

Subject – MB-241: Bacterial Genetics Teacher Name –Prof. S.C.Shelar

Month	Unit	Topics
March 2023	1	Understanding DNA:
		i. Experimental evidence for nucleic acid as genetic
		material.
		a. Discovery of transforming material (hereditary material):
		b. Griffith's experiment
		c. Avery and MacLeod experiment
		d. Gierer and Schramm
		e. Fraenkel-Conrat and Singer experiment (TMV virus)
		f. Hershay and Chase experiment
March – April	2	ii. Types of nucleic acids (DNA and RNAs)
2023		iii. Structure of DNA
		a. Structure of Nitrogen bases, Nucleoside, Nucleotide and
		polynucleotide chain
		b. Bonds involved in DNA structure
		c. Different forms of DNA

		iv. Prokaryotic DNA replication
April – May 2023	3	a. Models of DNA replication (Conservative, semi-
2025		conservative and Dispersive)
		b. Meselson and Stahl's experiment (semi-conservative)
		c. Six basic rules of DNA replication
		d. Enzymes, proteins and other factors involved in DNA
		replication.
		e. Modes of DNA replication Rolling circle mechanism, theta
		and linear DNA replication
		i. Gene expression
		a. Concept of Genetic code and its properties
		b. Concept of transcription and translation
April – May	4	
2023		ii. Mutations and reversions
		Concept of Mutation and Types of mutations: Nonsense,
		Missense, Silent, Conditional lethal-temperature sensitive,
		Amber, Reverse, suppressor
		a. Spontaneous Mutation
		□ Discovery of spontaneous mutation (Fluctuation test)
		□ Mechanism of spontaneous mutation
		□ Isolation of Mutants: Replica plate technique
		b. Concept of Induced Mutations
		□ Base pair substitution (Transitions, Transversions),
		Insertions and deletions-Frame / Phase shift mutations
		□ Physical Mutagenic agent: UV and X-ray
		Chemical mutagenic agents
		□ Base analogues (2 amino purine, 5 bromouracil),
		□ HNO ₂ , Alkylating agents
		□ Intercalating agents (EtBr, acridine orange)
		amino acids vitamins, minerals, water, buffers, antifoam
		agents, precursors, inhibitors, and inducers)

May 2023	5	
		iii. Plasmid genetics
		a. Types of plasmids
		b. Properties of Plasmid
		c. Plasmid replication
		d. Plasmid incompatibility
		e. Plasmid curing
		f. Plasmid amplification Concept
		Revision and assignment

Prof. J.C.Shelar

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 SEMESTER IV S.Y.B.Sc.

Subject –

MB – 242: Air, Water and Soil Microbiology

Teacher Name – Prof. S.P. Takale

Month	Unit	Topics
	1	Air Microbiology and Water Microbiology
		i. Air Microbiology
		a. Air flora
		Transient nature of air flora \Box
		Droplet, droplet nuclei and aerosols
		b. Methods of Air sampling and types of air samplers
		Impaction on solids \Box
		Impingement in liquid
		Sedimentation
		Centrifugation
		c. Air sanitation: Physical and chemical methods
		d. Airborne infections
		ii. Water Microbiology
March – April		
2023		b. Recommended Bacteriological standards of Water Quality
		□ Maharashtra Pollution Control Board (MPCB) Main Functions
		of MPCB
		Water quality standards for best designated usages
		Central Pollution Control Board (CPCB) Main Functions of
		CPCB
		Designated Best Use Water Quality Criteria
		c. Water purification methods
		d. Water borne Infections
		e. Indicators of faecal pollution:
		Escherichia coli, Bifidobacterium, Streptococcus faecalis,
		Clostridium perfringens,
		New indicators: Campylobacter and Pseudomonas
		f. Bacteriological analysis of water for potability
		i. Bacteriological standards of potable water: Bureau of Indian
		standards (BIS)
		ii. World Health Organization (WHO)
		iii. Presumptive coliform count
		iv. Confirmed test
		v. Completed test
		vi. Eijkman test vii. Membrane filter technique

	3	
April – May		Soil Microbiology
2023		a. Rhizosphere microflora and its role in the rhizosphere
		b. Role of microorganisms in composting and humus formation
		c. Biofertilizers: Bacterial, Cyanobacterial, fungal and their large- scale production
		d. Biocontrol agents: Bacterial, Viral, Fungal and their large- scale production
		e. Brief account of microbial interactions:
		Symbiosis, Neutralism, Commensalism, Competition,
		Ammensalism, Synergism, Parasitism and Predation
		f. Role of microorganisms in elemental cycles in nature: Carbon,
		Nitrogen
		Revision and assignment

•

Prof. S.P.Takale

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23

SEMESTER VI T.Y.B.Sc.

Subject – MB 361: Medical Microbiology II

Teacher Name – Prof. A.A. Indais

Month	Unit	Topics
Febraury 2023	1	Chemotherapy
		1. Routes of drug administration.
		2. Mode of action of antimicrobial agents on:
		a. Bacteria:
		i. Cell wall: Beta lactams:1st to 6th Generation- e.g. Meropenem,
		Imipenem, Piperacillin, Tazobactam ii. Cell membrane: Polymyxin
		iii. Protein synthesis: Streptomycin, Tetracycline
		iv. Nucleic acids: Fluroquinolones, Rifamycin
		v. Enzyme inhibitors: Trimethoprim, Sulfomethaxazole
		b. Fungi: Griseofulvin, Amphotericin B,
		Anidulafungin, Vericonazole
		c. Viruses: Acyclovir, Oseltamivir, Remdecivird. Protozoa: Metronidazole, Chloroquine
		u. 1 101020a. Metromuazore, emoroquine
Febraury- March 2023	2	2 Machaniana of drug resistores on
Waren 2025		3. Mechanisms of drug resistance on:
		a. Genetic basis:
		i. Mutations in gene(s)
		ii. Acquisition of foreign DNA coding for resistance
		determinants through horizontal gene transfer.
		b. Mechanisms of drug resistance by:
		i. Limiting uptake of a drug.
		ii. Modification of a drug target.
		iii. Inactivation of a drug.
		iv. Active efflux of a drug.
		Human and Animal Viruses, Fungal and Protozoal Pathogens
		over trials)
		f. Epidemiology of infectious diseases
		i. Sources and reservoirs of infection
		ii. Modes of transmission of infections
		iii. Disease prevention and control measures

March - April	3	4. Introduction to cultivation of viruses5. Study of following groups of viral pathogens:
2023		• • • • •
2023		a. Human viruses (with respect to – Virion, Characteristics,
		Viability characteristics, Pathogenicity, Pathogenesis, Symptoms,
		Laboratory diagnosis including serological diagnosis,
		Epidemiology, Prophylaxis and Chemotherapy):
		i. Respiratory Viruses: Influenza Virus, Corona Virus
		ii. Hemorrhagic Virus: Dengue
		iii. Hepatic Virus: Hepatitis A Virus
		iv. Gastrointestinal Virus: Rotavirus
		v. Cutaneous Viruses: Human papillomavirus
		vi. Neurological Viruses: Japanese Encephalitis Virus
		b. Animal Viruses: FMD Virus and Rinderpest Virus
		6. Study of following groups of parasites (with respect to -
		Classification, Lifecycle, Morphological characteristics, Viability
		characteristics, Pathogenicity, Pathogenesis, Symptoms,
		Laboratory diagnosis (Serological diagnosis wherever
		applicable), Epidemiology, Prophylaxis and Chemotherapy):
		a. Plasmodium
		b. Entamoeba
		7. Study of following groups of yeast and fungal pathogens
		(With
		respect to – Morphological and cultural characteristics,
		Classification, Pathogenicity, Pathogenesis, Symptoms,
		Laboratory diagnosis,
	4	Epidemiology, Prophylaxis and Chemotherapy)
May 2023		a. Aspergillus species (Pathogenic)
		b. Cryptococcus neoformans
		c. Histoplasma capsulatum
		Revision And Assignment

Prof. A.A.Indais

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 **SEMESTER VI**

T.Y.B.Sc.

Subject -MB 362 Immunology- II

	Teacher Name – Prof. K.A.Bendale		
Month	Unit	Topics	
Febraury 2023	1	Cytokines, Adaptive / Acquired Immunity, Hypersensitivity, Autoimmunity and Autoimmune diseases and Immunodeficiency 1. Cytokines: a. Concept- Cytokines, lymphokines, monokines, interleukines, chemokines, interferons and tumor necrosis factor b. Properties, Attributes and biological functions of cytokines 2. Adaptive / Acquired Immunity (Third line of defense): A. Humoral Immune Response i. Primary and secondary response kinetics, significance in vaccination programs ii. Response of secondary lymphoid organs to antigen iii. Antigen processing and presentation (Major Histocompability class I and class II restriction pathways), cell-cell interactions and adhesion molecules, response to super-antigens, role of cytokines in activation and differentiation of B-cells	
Febraury – March 2023	2	 B. Cell Mediated Immune Response Activation and differentiation of T cells, role of cytokines in activation Mechanism of Cytotoxic T lymphocytes (CTL) mediated cytotoxicity, Antibody-dependent cellular cytotoxicity (ADCC) Significance of Cell Mediated Immune Response (CMI) Immune response against tumors and foreign transplanted cells 	
March – April 2023	3	 Hypersensitivity, Autoimmunity and Autoimmune diseases and Immunodeficiency 3. Hypersensitivity a. General principles of different types of hypersensitivity reactions b. Gell and Coomb's classification of hypersensitivity – mechanism with examples for type I (Immediate), II, III and IV (delayed) 4. Autoimmunity and Autoimmune diseases: a. Immunological tolerance b. Types of autoimmune diseases c. Factors contributing development of autoimmune diseases 	

		 d. Immunopathological mechanisms e. Diagnosis and treatment of autoimmune diseases: Myasthenia gravis and Rheumatoid arthritis f. Therapeutic immunosuppression for autoimmunity
May 2023	4	 5. Immunodeficiency: i. Complement deficiencies ii. Introduction to congenital immunodeficiency disorders: Common Variable Immune Deficiency (CVID) and acquired immunodeficiency: Immune mechanisms in AIDS Revision And Assignment

Prof. K.A.Bendale

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 SEMESTER VI

T.Y.B.Sc.

Subject – MB 363: Metabolism Teacher Name –Prof. S.P.Takale

Month	Unit	Topics
Febraury 2023	1	Membrane transport and Bioenergetics
		 Membrane transport mechanisms: i. Passive transport - Diffusion, Osmosis, Facilitated transport ii. Active transport - Active transport systems in bacteria iii. Group translocation of sugars in bacteria iv. Ionophores: Mechanism and examples
		 2. Bioenergetics: i. Laws of thermodynamics- first and second law ii. Concepts of free energy, entropy, high energy compounds: Pyrophosphate, enolic phosphates, acyl phosphates, thioester compounds, and guanidinium compounds iii. Mitochondrial electron transport chain: components, arrangement of different components in the inner membrane, structure and function of ATP synthatase, inhibitors and uncouplers of ETC and oxidative phosphorylation, energetics of mitochondrial electron transport chain
Febraury – March 2023	2	 Metabolic pathways and Autotrophy 3. Biosynthesis and Degradation: a. Chemistry, concept of polymerization of macromolecules: Polysaccharides. (Starch, and peptidoglycan) and Lipids (Fatty acids, triglycerides and phospholipids) b. Degradation of macromolecules – Polysaccharides (starch), Lipids (fatty acids oxidation e.g. β oxidation), Proteins (urea cycle)
March – April 2023	3	 4. Bacterial Photosynthesis: Photosynthetic bacteria with reference to photosynthetic apparatus, energy generation, and CO₂ fixation a. Cyanobacteria, b. Purple bacteria

	4	
May 2023		4. Bacterial Photosynthesis: Photosynthetic bacteria with reference to photosynthetic apparatus, energy generation,
		and CO ₂ fixation
		a. Cyanobacteria,
		b. Purple bacteria
		5 Chemolithotrophy:
		Concept and one example, Iron oxidizing bacteria

Prof. S.P.Takale

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 SEMESTER VI

T.Y.B.Sc.

Subject – -MB-364: Molecular Biology Teacher Name –Prof. J.C.Shelar

Month	Unit	Topics
Febraury 2023	1	Genetic Recombination and Bacteriophage Genetics.
		 1. Gene linkage and crossing over a. Mendel's laws: Eukaryotic Cell cycle, Mitosis, Meiosis b. Holliday model for Homologous recombination, Role of Rec and Ruv proteins c. Genetic mapping by Tetrad analysis in <i>N. crassa</i> (Numerical Calculations using PD, TT and NPD) d. Genetic Mapping by Parasexual cycle in <i>A. nidulans</i> 2. Bacteriophage Genetics a. Lytic cycle: Virulent phages, T-series phages, Concept and formation of plaque, Lysogenic cycle: Temperate phage (□phage) b. Bacteriophage mutants: Plaque morphology (r type), Host range, Conditional lethal mutants (Ts and Am) c. Concept of Genetic Complementation and Cis-trans test of genetic function. (Intergenic- rII locus of T4 phage, Mechanism of Intragenic complementation.) d. Fine structure mapping of rII locus of T4 phage using Benzer's spot tests and deletion mapping
Fahraum	2	DNA damage and repair mechanisms, Recombinant DNA
Febraury – March 2023		 b) A damage and repair mechanisms, Recombinant DNA technology 3. DNA damage and Repair mechanisms a. DNA damage by hydrolysis, deamination, alkylation, oxidation, Radiation (X rays and UV rays) b. DNA repair by Photo reactivation c. DNA repair by Mismatch repair mechanism d. DNA repair by Excision repair mechanisms (BER/NER)

	3	
March – April		
March – April 2023		 4. Recombinant DNA Technology Tools and basics of recombinant DNA technology a. Introduction to recombinant DNA technology b. Restriction enzymes: Concept, Nomenclature, properties and types with examples (Eco R1, Sma I, Pst I). c. Vectors: Features of an ideal vector i. Plasmids: pBR322 ii. Bacteriophage vectors: Lambda iii. Cosmids iv. High capacity vectors: YACs, BACs v. Expression vectors d. Joining of DNA molecules- DNA Ligases (<i>E. coli</i>and T4 phage), Use of Linker / Adaptor / Homopolymer tailing e. Methods to transfer recombinant DNA into bacterial host cells (Physical – Electroporation, Gene gun, Chemical – CaCl2 mediated, liposome mediated) f. Methods of screening recombinants using selective markers and Blue-white screening
May 2023	4	 5. Molecular techniques used in RDT a. Isolation of genomic DNA b. Principle and methodology of Agarose gel electrophoresis and its applications c. Concept, Methodology and applications of Southern, Northern and Western blotting and non recurring expenditures) citing any suitable example. Introduction to Intellectual Property Rights (IPR) - Types of IPR Revision And Assignment

•

Prof. J.C.Shelar

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACUINIC PLAN - 2022 23

TEACHING PLAN 2022-23

SEMESTER VI

T.Y.B.Sc.

Subject – MB 365 Fermentation Technology – II

Teacher Name - Prof. J.C.Shelar Month Unit Topics Febraury 2023 1 Solid state and Submerged state fermentations and Large scale fermentations 1. Introduction to Solid State Fermentation and Submerged **Fermentation:** Process, production strains, media, fermentor design, fermentation conditions, applications, merits and demerits 2. Large scale production of (process with flow sheet, nature of the product, production pathway, applications, production strains, media, fermentation process, parameters, product recovery) a. Primary Metabolites: i. Vitamins (B12 and B2) ii. Amino acids - Glutamic acid, Lysine iii. Organic acids (Citric acid, Vinegar and Lactic acid) **b. Secondary metabolites:** i. Bioethanol ii. Alcoholic Beverages -Febraury -2 March 2023 a. Beer (Lagering, Maturation, Types of beer) b. Wine (Aging, Malo-lactic acid fermentation, types of wine, wine defects, comparison of white and red wine) iii. Antibiotics [Penicillin (natural and semi synthetic) and Streptomycin] Large scale production of enzymes, steroids, biomass based products, milk products, vaccines, immune sera and Modern trends in microbial production 3. Enzymes i. Amylase ii. Esterases iii. Proteases

March – April 2023	3	 4. Microbial transformation of steroids 5. Biomass based products: Yeast: Baker's and Distiller's yeast Probiotics: <i>Lactobacillus sporogenes</i> 6. Milk products: Cheese (Processed, soft, semi-hard, hard ripened types-bacterial and mold) Yogurt (plain, flavoured, fruit, sundae style. Stirred type, set type, probiotic yoghurt)
May 2023	4	 7. Vaccines Polio – Inactivated Polio Vaccine, Oral Polio Vaccine Tetanus – Tetanus toxoid (TT) Rabies – HDCC, Chick embryo cell line, Vero cell line 8. Immune sera Anti tetanus serum (ATS) Anti rabitic serum (ARS) 9. Modern trends in microbial production: Biosurfactant and bioemulsifier Revision And Assignment

Prof. J.C.Shelar

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 SEMESTER VI

T.Y.B.Sc.

Subject – MB 366: Food Microbiology

Teacher Name – Prof. A.A.Indais

Month	Unit	Topics
Febraury 2023	1	Introduction to properties of food and spoilage of food
		1. Classification of food- Perishable, non-perishable, and stable. Sensory characters of food- a. Definition of food
		 b. Sensory or organoleptic factors- appearance factors-(size, shape, color, gloss, consistency, wholeness) c. Textural factors-texture changes d. Flavor factors (taste, smell, mouthfeel, temperature
		2. Factors affecting Microbial growth in food
		a. Intrinsic factors- pH, water activity, O-R potential, nutrient content, biological structure of food, inhibitory substances in food.b. Extrinsic factors-Temperature of storage, Relative humidity,
		concentration of gases.
March 2023	2	 3. Sources of food spoilage microorganisms a. Contamination and spoilage of perishable foods- vegetables and fruits, Meat and meat products, Fish and other sea food, Egg and poultry products. b. Contamination and spoilage of canned foods c. Contamination and spoilage of- cereals and cereal products, sugar and sugar products, salad dressings, spices and condiments. ii. Stability of enzyme activity at pH and temperature
March – April 2023	3	 Food Preservation and food in relation to disease 4. Principles of food preservation a. Importance of TDP, TDT, D, F, Z values b. Use of low and high temperature for food preservation. c. Use of chemicals and antibiotics in food preservation, d. Canning e. Dehydration f. Use of radiation g. Tetra pack technology h. Food grade bio preservatives

		5. Microbial food poisoning and food infection
		a. Food poisoning - <i>Clostridium botulinum, Aspergillus flavus</i> b. Food infection- <i>Salmonella typhimurium, Vibrio</i> parahaemolyticus
May 2023	4	 6. Concept of Prebiotic and Probiotic and fermented food-definition, Health effects, Quality assurance, Safety, side effects and risk. Potential applications of Prebiotic, Probiotic and fermented food 7. Food sanitation and regulatory authorities (ISO, FDA, WHO)

•

Prof. A.A.Indais

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 SEMESTER VI

T.Y.B.Sc.

Subject – MB 3610 Waste Management Teacher Name – Prof. K.A.Bendale

Month	Unit	Topics
Febraury – March 2023	1	 A. Liquid Waste Management Principles of Wastewater Treatment The need for treatment of wastewater General characteristics of liquid waste - pH, Color Turbidity, Odor, Electrical conductivity, COD, BOD, Total Solids, Total Dissolved Solids, Total Suspended Solids, Total Volatile Solids, Chlorides, Sulphates, Oil and Grease. Role of microorganisms in wastewater treatment Aerobic and Anaerobic digestion models; attached / anchored and suspended growth. Removal of pathogenic microbes, indicator microbes, enumeration of different types of microbes
March 2023	2	3. Unit operations in wastewater treatment plant i. Collection system - Methods of collection, conservancy systems, water carriage system, sewerage system. ii. Screen chamber, Grit chamber, Oil and grease removal iii. Stabilization pond, Aerated lagoon iv. Activated sludge process, Trickling filter v. Rotating biological contactors, anaerobic digestion processes, fluidized bed reactor.

	3	B. Solid Waste Management and hazardous waste
April – May		4. Characterization of solid wastes: Dairy and e-waste
2023		5. Biomedical waste: Definition, Types, Processing
		6. Solid biodegradable waste processing: Composting, Vermi
		composting, Biogas production
		7. Post-processing by-products of municipal solid waste
		treatment: leachate refused-derived fuel (RDF)

•

Prof. K.A.Bendale

K.T.S.P.MANDAL'S SAHEBRAOJI BUTTEPATIL MAHAVIDYALAYA RAJGURUNAGAR TEACHING PLAN 2022-23 SEMESTER VI

T.Y.B.Sc.

1
Subject – MB 3611 Nano-biotechnology
Teacher Name – Prof. S.P. Takale

Month	Unit	Topics
Febraury – March 2023	1	1. Introduction to Nano-biotechnology: a. Introduction to nanoscale, nanomaterials, nanoscience and nanotechnology b. Nanoscale bioassemblies c. Liposomes, viruses, DNA, polysaccharides and proteins (Protein nanotubes, nanofibers, peptide nanoparticles). d. Biomedical applications of bioassemblies e. Cell targeting, drug delivery, bioimaging and vaccine development.
March 2023	2	2. Microbial mediated metallic nanoparticles synthesis: a. Gold nanoparticles (AuNPs) b. Silver nanoparticles (AgNPs) c. Au-Ag alloy nanoparticles d. Oxide nanoparticles e. Magnetic nanoparticles f. Non-magnetic oxide nanoparticles g. Sulfide nanoparticles etc.

April – May 2023	3	3. Characterization techniques for nanomaterials:
		 UV-visual spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and dynamic light scattering (DLS). 4. Applications of nanoparticles:
		Antibacterial agent, drug delivery, biosensor, animal industry and nanotechnology in wastewater treatment.

Prof. S.P.Takale