

Introduction to cell biology:

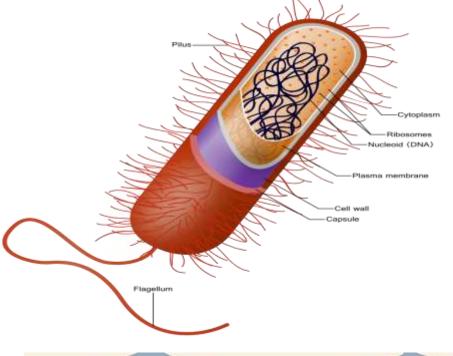
- ➤ Also known as Cytology.
- ➤ It is the branch of biology that deals with the study of cell and its structure, functions.
- ➤ It also concerned with physiological properties, metabolic processes, signling pathways, life Cycle, chemical composition and interaction of cell with their environment.
- ➤ Cells are the fundamental building blocks of life.
- ➤ The first form of life on earth about 3-4 billion years ago.
- They are the smallest units of an organism that can be characterized as living.
- ➤ Many organisms are multicellular & also Unicellular microorganisms

Continued......


- ➤ Robert Hooke was the first to use the word cell in 1665
- ➤ He observed hexagonal compartment at cork under microscope and that term as cell
- ➤ Antonie van Leeuwenhoek was the first observe a living cell under a microscope in 1674.
- ➤ Cell consist of the diversity in their shape, size, structures according to their functions.

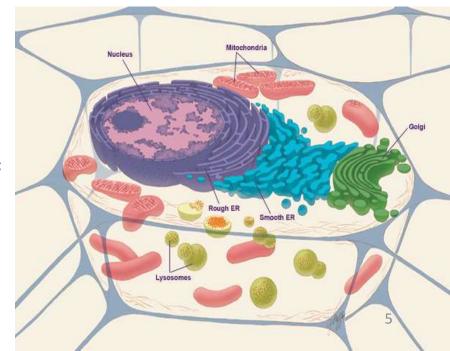
Cell Theory:

- ➤ Proposed by T. H. Schwann and M. J. Schleiden in 1839
- ➤ The basic elements of the classical cell theory state that -
- ➤ All living things are composed of cells.
- ➤ Cells are the basic unit of structure and function in living thing
- ➤ Cells are produced from pre-existing cells.
- ➤ All cells are totipotent or plueropotent



Types of cells:

Two types of cell


1)Prokaryotic cells:

Pro – Before & Karyon - Nucleus cells without a nucleus such as bacteria

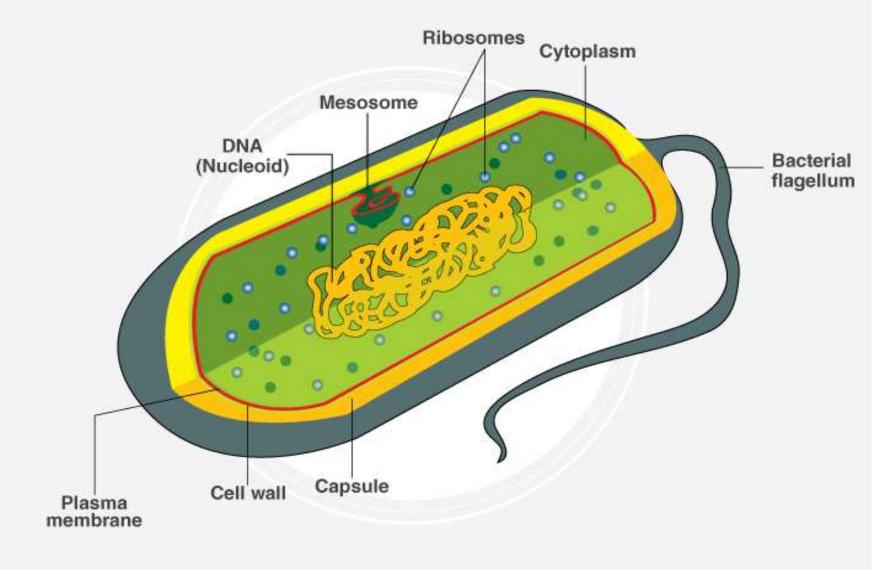
2) Eukaryotic cells:

Eu – True & Karyon - Nucleus cells with a distinct nucleus which possess organized chromosomes that store genetic material

1/14/2023 DRB

Importance and Applications of Cell Biology:

- Understanding cells work in healthy and diseased states, cell biologists will be able to develop new vaccines, more effective medicines, plants with improved qualities.
- ➤ Forensic medicine uses cell biology and DNA fingerprinting to help solve murders and assaults.
- ➤ It helps to get knowledge of cyto-genetics and help to understand Mendel's laws of inheritance and concept of gene.
- It gives knowledge of cyto- pathology and growth of cancer cell
- It helps to study cell physiology and various physiological disorders
- ➤ It help in Study of the occurrence of evolution and it indicates how evolution is takes place.
- ➤ It helps to study of chromosomal abnormalities and change in number of chromosomes


Continued.....

- The knowledge of cell biology useful develope to genetically modify crops, clone plants and animals
- ➤ It also helps produce and ensure high quality food is available at lower costs; to produce purer medicines and in time organs for the many people who need transplants.
- ➤ It show the presence of carbohydrates, proteins, lipids, nucleic acid and other organic and inorganic chemical compound in the cell and their metabolic pathways.
- Knowledge of cell structure of living cells is very impotant in order to carry out cell therapeutics and related genetic studies
- ➤ It helps to understand the concept of Cell Death and the concept of cell apoptosis (programmed cell death)

Prokaryotic Cell –

- Small, simple and most primitive
- Nuclear material is not bounded by definite nuclear membrane.
- > Organisms like bacteria and cynobacteria show prokaryotic organization
- Average diameter is about 1 micrometre
- Four forms of bacteria –
- i) Cocci spherical or circular in shape
- ii) Bacillii rod shap
- iii) Spirilla- spiral or spring shape
- iv) Vibrios Comma shape
- Cynobacteria or blue green algae are photosynthetic prokaryotes and fix atmospheric nitrogen

PROKARYOTIC CELLS

1) Cell Envelope:

- > It consists three basic layers, glycocalyx, cell wall and cell membrane
- These three layers ogether act as a single protective covering

a) Glycocalyx:

- Outermost layer made up of macromolecules polysaccharide and protein which help in adhesion of bacteria.
- Glycocalyx differs in composition and thickness among different bacteria.
- ➢ It could be a loose sheath called the slime layer in some, while in others it may be thick and tough, called the capsule

b) Cell Wall:

- Present below Glycocalyx & provide definite shape and gives strong structural support
- Made up of peptidoglycan or murein
- > The cell walls of different bacteria show different types of reactions to Gram's stain.
- ➤ Those take up the gram stain are Gram positive and the others that do not are called Gram negative bacteria.

c) Cell membrane:

- Innermost covering of cell Envelope composed of lipids and proteins.
- ➤ It separates the interior of the cell from its environment, serves as a barrier and helps in intercellular communication.
- ➤ It is the site for critical metabolic processes like respiration, photosynthesis, synthesis of lipids and cell wall constituents
- It also holds receptor molecules that helps bacteria to detect and respond to chemical in their surroundings

2) Cytoplasm:

- > A semi- fluid ground substance or matrix present inner to the cell membrane
- ➤ It contains a variety of inorganic and organic compounds which provide a suitable chemical environment for cellular activities.
- ➤ It lacks membrane bound organelles such as mitochondria, endoplasmic reticulum, Golgi complex and lysosomes
- Certain membranous structures like mesosomes and chromatophores are observed

a) Mesosomes:

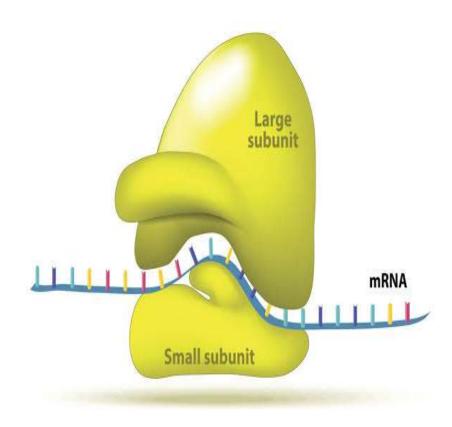
- These are invaginations of plasma membrane into the cell in the form of vesicles, tubules and lamellae
- Mesosomes are involved in the formation of cell wall and in DNA replication and distribution of chromosomes to daughter cells.

b) Chromatophores:

- Usually found in photosynthetic bacteria and cynobacteria
- They contains different types of pigments such as bacteriochlorophylls bacteriophaeophytin and carotenoids

c) Inclusion bodies:

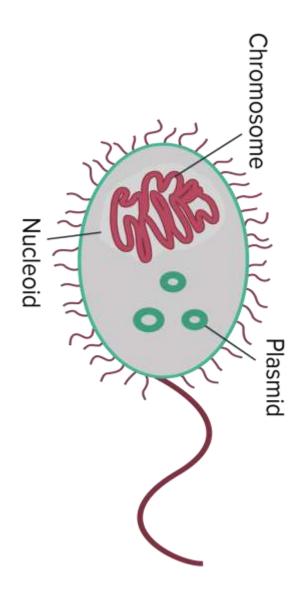
- ➤ A kind of storage granules that lie free in the cytoplasm
- Reserve material in prokaryotic cells are stored in the cytoplasm in the form of inclusion bodies.


Two types

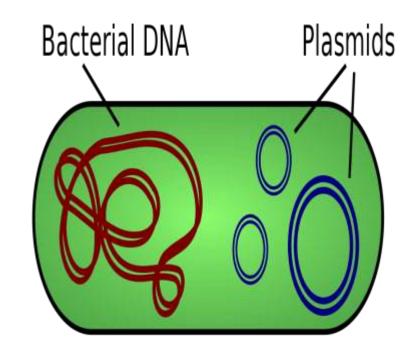
- i) Organic Inclusions: includes starch and glycogen granules
- ii) Inorganic Inclusions: includes phosphate and sulphur granules.

3) Ribosome:

- The cytoplasmic matrix of prokaryotic cell possesses dense particles called ribosomes.
- Made up of RNA and protein
- Prokaryotic ribosomes are 70S type.
- ➤ Each 70S is composed of two subuints: 50S and 30S.
- > They help in protein synthesis
- Severa ribosomess may attach to a single mRNA and form a chain called
- polyribosomes or polysome.
- The ribosomes of a polysome translate the mRNA into proteins.


RIBOSOME

DRB 14


4) Genetic Material (Nucleoid):

- The prokaryotes do not have membrane bound nucleus
- Genetic material consists of a long, double stranded, circular DNA molecule known as prokaryotic chromosome
- It is highly looped and coiled with associated proteins
- These associated proteins differ from the histone proteins of eukaryotic cells.
- Circular DNA molecule is connected to the plasma membrane through the mesosome.

5) Plasmids:

- The extra chromosomal DNA present in Prokaryotic Cell is called as plasmid
- The prokaryotic Cell may possess one or more additional self replicating molecules of circular DNA or mini chromosomes are the plasmids
- Plasmid can carry out function, such as antibiotic resistance and fertility

Characteristics	Eukaryotic Cells	Prokaryotic Cells
Definition	Any cell that contains a clearly defined nucleus and membrane bound organelles	Any unicellular organism that does not contain a membrane bound nucleus or organelles
Examples	Animal, plant, fungi, and protist cells	Bacteria and Archaea
Nucleus	Present (membrane bound)	Absent (nucleoid region)
Cell Size	Large (10-100 micrometers)	Small (less than a micrometer to 5 micrometers)
DNA Replication	Highly regulated with selective origins and sequences	Replicates entire genome at once
Organism Type	Usually multicellular	Unicellular
Chromosomes	More than one	One long single loop of DNA and plasmids
Ribosomes	Large	Small
Growth Rate/Generation Time	Slower	Faster
Organelles	Present	Absent
Ability to Store Hereditary Information	All eukaryotes have this ability	All prokaryotes have this ability
Cell Wall	Simple: Present in plants and fungi	Complex: Present in all prokaryotes
Plasma Membrane	Present	Present
Cytopiasm	Present DRB	Present ¹⁷