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Chapter 1

Introduction to Differential
Equations

The following topics are to be covered from differential equation of first order and first degree. Topics
included here are from unit-3 of the syllabus according to choice base credit system effective from
June-2010. The course code of the M-101 and title of the paper is Geometry and calculus.
Differential Equations of First Order and First Degree: Definition and method of solving of homoge-
neous differential equations, Definition and method of solving of Linear differential equations of first
order and first degree, Definition and method of solving of Bernoulli’s differential equation and Def-
inition and methods of solving of Exact differential equation. Differential Equations of First order
and Higher Degree: Differential equations of first order and first degree solvable for x, solvable for y,
solvable for p. Clairaut’s form of differential equation and Lagrange’s form of differential equations.

Definition 1.1. Differential equation is an equation which involves differentials or differential coeffi-
cients. For example,

dy _ .2
1. Z=x"+2y.

2 )

2. rz% = a. Where a is constant.
d’q . pdqd 1, _ po

3. LW+RE+Eq—Esmwt.

Definition 1.2. A differential equation is said to be linear in dependent variable if,
1. dependent variable and all its derivatives present are in first degree.
2. dependent variable and its derivatives are not multiplies together.

3. dependent variable and its derivatives are not multiplied with itself.
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4. no transcedental functions of dependent variable and/or its derivative occur.

Remark 1.3. A differential equation which is not linear is said to be Non-linear. It is nice exercise to
find out some examples of linear and non linear differential equation. You can check from examples
given in the exercises. (do it!)

Definition 1.4. An ordinary differential equation (O. D. E.) is a differential equation which involves
only ordinary derivatives.

Definition 1.5. A partial differential equation (P. D. E) is a differential equation which involves only
partial derivatives. For example,

ou 0’U | 0°U
1. 57 C(ax2 6y2)'

U _ 28U
2. = C

Definition 1.6. The order of the differential equation is defined to as the order of the highest derivative
involved in the differential equation. Also, the degree of the differential equation is defined as the
degree of the highest derivative involved in the differential equation, where all derivatives occurring
therein are free from radicals and fraction.

Examples 1.7. (1) Decide the order and degree of the differential equation given by

d’y  dy f
2 .
x*—5 +x——+ | 3dx=sinx.
dx* ~dx
Solution: The given differential equation is not free from integration sign. So, to decide order of a
differential equation we have to differentiate with respect to x on both sides and make it free from

integration.

d’y  d’y dy
2 —
:xﬁ+3xﬁ+a+3—cosx.

Here, order of the highest derivative involved is three. Therefore, order of differential equation is 3, and
degree of highest derivative is 1. Thus, order is 3 and degree is 1.

@)V (y"° = V7+3(y)?

Solution: To obtain degree of differential equation we have make differential equation free from radi-

cals.
G = ((7+30D)%

(y//)S _ (7+3(y’)2)2.

() = [reo(2

Which shows that order of the given differential equation is 2 and degree is 5.

2




Definition 1.8. 1. A solution or integral or primitive of a differential equation is a relation
between the variables which does not involve any derivatives and also satisfies given differen-
tial equation. For example, y = c; cosx + cpsinx, where c; and c, are arbitrary constants, is a

2
solution of the differential equation given by % +y=0.

2. Asolution of a differential equation in which the number of arbitrary constants is equal to the or-
der of the differential equation is called the general solution or complete integral or complete
primitive.

3. The solution obtained from the general solution by giving particular values to the arbitrary con-
stants is called particular solution. For example, y = x* + 2 is a particular solution of the differ-
ential equation % =4x3, wherec = 2.

4. A solution which can not be obtained from a general solution is called singular solution . For
2
example, y = x% -2 (%) . The general solution is given by y = cx +2c¢?, where c is an arbitrary

constant. Also, 8y = x? is a singular solution which can not be obtained by putting any value of
c.

Examples 1.9. (1) Find the differential equation from y = ax — a*, where a is an arbitrary constant.
Solution: Differentiating y = ax — a® with respect to x we get % = a. Substituting we get desired differ-

2
ential equation y = (%) x— (%) .

(2)Form the differential equation from y = Ae** + Be®*; where A and B are arbitrary constants.
Solution: Here, two arbitrary constants A and B are present, therefore to eliminate them we have to
differentiate two times.

d
- 2Y e 1 5BeS, (1.1)
dx
again by differentiating with respect to x we get,
dZ
2 4Ae?* 125865, (1.2)
dx?

Multiply equation y = Ae** + Be>* by -2 and adding in (4.2) we get

dy 5 1[dy 2 ]
—=~ -2y=3Be™ = Be™'=—-|—=-2y|. 1.3
dx ¥ ¢ ¢ 3ldx 3 (1.3)
Now multiply (4.1) by -5 and adding in (4.2) we get, Ae** = g% - %%. Thus by substituting values of
constants we get
d’y _dy
—2 —7-2410y=0.
dx* dx y
Which is required differential equation.
Exercise-1

Que-1. Find the differential equation from the following equations.



1. xy=ce*+be "+ x?, where b and c are arbitrary constants.

2. ax?+by? =1, where a and b are arbitrary constants.

3. y=ax+ bx? where a and b are arbitrary constants.

4. r?=a?cos20, where a is an arbitrary constant.

Que-2. Find out order and degree of the following differential equations.

1. xZ%—x(%)3+y=cosx.
2. LAl

3. (A2 = /1+ (@2,

4. %: %-kfxdx.

Que-3. Show that y = e?* is a solution of a differential equation

d? d
Y r20-3 _4y-o0.
X

3x°—=
*dxz d

Que-4. Prove that y = 2x +5e~* is a particular solution of a differential equation

d’y dy
(X+I)W+XE—_}/:0.

Que-5. Which curve is represented by a differential equation

d’y
Zdﬁ =17

4



Chapter 2

Differential Equations of First Order
and First Degree.

In order to solve the differential equation, we need to investigate, whether the solution exists. It is not
2
always possible to find a real analytic solution of a given differential equation. For example, (%) =
—5 has no solution for any real value of y. In our case we shall discuss some of the special types
of differential equations for which analytic solution exists. Only those differential equations which
belong to or can be reduced to any one of the following type can be solved by standard procedure.

These types are,
1. Differential equation in which variables are separable.
2. Homogeneous differential equations.

3. Nonhomogeneous differential equations which can be reduced to homogeneous differential
equations.

4. Linear differential equations.

5. Bernoulli’s differential equations. These are nonlinear types of differential equations which
can be reduced to linear form.

6. Exact differential equations.
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2.1 Differential equations in which variables are sep-
arable.

The general form of this type of equation is
Mx)dx+N(y)dy =0, @2.1)

which can be solved by direct integration as | M(x)dx+ [ N(y)dy = ¢, where c is an arbitrary constant.
If the differential equation is given in the form

HX)g(ydx+ fo(x)82(y)dy =0, (2.2)
then we can reduce it in the form of equation (2.1) by rewriting as

filx) dxt &)
fo(x) g1y

dy=0,

provided f>(x) #0, g1(y) # 0. Also, if the given differential equation is in the form

dy = flax+by+o0), (2.3)
dx

then put ax + by + ¢ = u, to convert it in general form. Let us see following examples to understand
this method well.

Examples2.1. 1. % =372 4 x2e72),
Solution: The given differential equation is not in its general form. In order to solve the given
differential equation first we will convert it into general form.

d
4y _ e B x+x%)
dx

= edy= (> +x%)dx
= (& +x%)dx-e?Vdy=0,

which is in the general form and hence the solution can be obtained by direct integration.
= f(e3x+x2)dx—fe2ydy: c

e3x x3 62 y

- — 4+ — - —=C
3 3 2

or3e? =23+ x + .

Which is a general solution of the given differential equation and c' is an arbitrary constant.
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2. Obtain particular solution of% = (4x+y+1)?, where y(0) = 1
Solution: The given differential equation is not of the form of separable variable. Hence, to con-
vert it into separable variable form we put4x+y+1=t and % =4+ % = % = % —4. Put
these values in equation we get

— —4=¢?
dx
dt
S =dx.
r-+4
dt . .
rwie dx+ c, where c is an arbitrary constant.
1t
S.-tan - =x+c
2 2
1 4x+y+1
.‘.—tan_l—y =x+c
2 2

Putx=0andy=1wegettan(2c) =1 = 2c = 7. Thus, particular solution is given by

4x+y+1:2tan(2x+%).

2.2 Homogeneous differential equations

Definition 2.2. Let E c R?. A function f : E — R is said to be homogeneous of degree n if it can be
written in the form f(x,y) = x”t/)(%).

Definition 2.3. A differential equation is said to be homogeneous differential equation if it is of the

form
ay _ ¥y, .4y _ Py
dx _f(x) Tax T 0wy

Where P(x, y) and Q(x, y) are homogeneous functions of equal degree in variables x and y.

(2.4)

In order to solve homogeneous differential equations we need to follow mainly three following steps.
1. Put y = vx in the given differential equation and evaluate %.

2. Substitute the values of y and % in main equation and bring the equation in the form of sepa-
rable variable.

3. Solve by the method of separable variable.

Examples 2.4. 1. Solve: (x*+ y*)dx—2xydy =0
Solution:
dy x*+y*> (1+3%)
dx  2xy 2

X

(2.5)
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Puty=vx weget % =v+ x%. Substitute these values in equation (2.5) we get,
dv 1+v
vVHX— =
dx 2v

dx 2v
dv 1= v?
dx  2v

2V 1
dv=—dx

1-0v2 X

Which is now in the separable variable form. So, solution can be obtain by direct integration.

Integrating both side we get,
2v 1
f dv= f —dx
1-0v2 X

. —log(1 — v*) = log x +log ¢ where c is an arbitrary constant.

. logx+log(l - v?) =logc', wherec = ¢!

-~ log(x(1 - v?) =logc’

by taking exponential on both sides we get,
x(1-v%) =¢,
now substitute the value of v in above equation, we get
X“—y“=cx

which is the general solution of the given differential equation.

2.3 Nonhomogeneous differential equations which can

be reduced to homogeneous differential equations.

A differential equation of the form,

dy ax+by+c

= 2.6
dx Ix+my+n (2.6)

is not homogeneous differential equation, but by making some change we can reduce it to the case of
homogeneous differential equation.

Case-1 7 # %. In order to solve differential equation having this case, let x = x'+ hand y = y' + k,
where h and k are constants.Also, dx = dx' and dy = dy'. Then equation (2.6) reduces to

dy' ax'+by +ah+bk+c
dx' ~ Ix'+my' +lh+mk+n

(2.7)
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In this equation we select h and k by solving ah + bk + ¢ = 0 and [h + mk + n = 0 such that equation

(2.7) will turn out to homogeneous differential equation % = lang : ,ZJ;,,, where al — bm # 0. Which is

homogeneous in the variables x” and y’. So solve it by putting y' = vx'.

Case-II % = %. In this case al — bm = 0,and hence h and k will be indetermined or infinity. Hence
put ‘—ll = % = t, where  is constant in equation (2.6) we get

dy (Ux+my)t+c

dx (Ix+my)+n’ 2.8)

Now by substitute [x+ my = t in equation (2.8) we can solve the given differential equation. Let us
see the following examples to understand this method well.

Examples 2.5. (1 )% = ifﬁ:i Solution: The differential equation is given by
ﬂ _ y+x-2 2.9)
dx y-x-4 '

is not homogeneous differential equation. By comparing with (2.6) wegeta=1,b=1,1=-1,m=1.
Here, § = ~1# % = 1. Hence substitute x = x' + h and y = y' + k in equation (2.9) we get,

ay' B yV+x'+k+h-2)
dx' Yy —x'+(k—h-4)

(2.10)

To convert equation (2.10) in homogeneous differential equation we takek+h—-2=0andk—h—-4=0,
by solving we get h = —1, k = 3. Hence with these values of h and k equation (2.10) reduces to,

! /

dy' y'+x

F il which is homogeneous differential equation. 2.11)
x' y-x

In order to solve put y' = vx' and % =v+ x’% in equation (2.11) we obtain,

ydv vx'+x v+1

vV+x — = =
dx' vx'-x' v-1
ydv  v+1 1+2v-v?
X—=-y)—
dx' v-1 v—1
v-1 _ax

.. ———dv =—-, which is separable variable form
142v—v? x'

By integrating term by term we get,

v—1 dx' ) .
———dv= —+c where c is an arbitrary constant.
X

1+2v—-v2
: 1[ 2-2v =logx'+c
2 1+2v-1v2dv &

! 12
.'.log(l +2L, - y—/z) +logx? =-2¢
x'x
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clog(x? +2x'y' — ') —logx"? +logx'* = —2¢
. x12+2xlyl_y12 — e—ZC =c
by substitutingx' = x+1 and y' = y—3, we get x> +2xy—y*>—4x+8y—14 = ¢/, which is general equation
of given differential equation. 2)(x—y+2)dx+ (2x—-2y—-4)dy =0
Solution: The differential equation is given by,

dy = x-y+2

= 2.12
dx 2(x—y) - (2.12)
is not homogeneous differential equation. By comparing with (2.6) wegeta=-1,b=1,1=2,m = -2.
Here, § = —% = b . Therefore h and k can not be determined. Putx—y =z and1— d = gfc in equation
(2.12) we get,
dz z+2
1-—+——=0
dx z-4

_dz 3z-2
'dx 2z—4

2z-4
"3z-2
In order to get solution integrate the terms separately we get

dz = dx, which is separable variable form.

2z—4
f dz = fdx + ¢, where c is an arbitrary constant

3z-2
23z-2-4
f —dz —fdx+c
3 3z-2

2 4
.'.—f(l——)dz=x+c
3 3z-2

2 4
§ x—y—glog[S(x—y)—Z]] =3x+c’, wherec' =3c

8
SX+2y+ 3 log[3(x—y)—2]+ ¢, whichisa general solution.
Exercise-I1

Identify type of the following differential equations and solve them.

3 _cos3x+c.)

1. Zy% =x?+sin3x. (Ans:3y*=x
2. 3eftanydx+ (1—-e%) sec? ydy=0. (Ans:tany=c(l- e*)3))

2., .2y
3, Ly 20001 _ g (Ans: 2x2 + y2 + 3log(x2 + y2 —2) = c.)

xdx X2+y?+1

4. x Zy+x y+cosec(xy)=0. (Ans: cosxy+2x2 =c.)
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5. y—x%:a(y2+%). (Ans: (x+a)(1-ay) = cy.)

6. x% =y+cos?(L). (Ans: tan(2) =log|cx|
7. y2+x2%=xy%. (Ans: y = xlogy+cx).

8. y—x%:m. (Ans:y+\/Jsz:c.)

9. iiﬁi (Ans: tan’1%=log(0m)).

dy _ x+2y-3
10. 7% 2x+y-3°

(Ans: (x+y—2)(x—y)_3 =0).
11. By+2x+4)dx—(4x+6y+5)dy=0. (Ans:21x—42y+9log(14x+21y+22)=c).

12. 2x+9y—-20)dx=(6x+2y—10)dy. (Ans: (y—2x)2:c(x+2y—5)).

2.4 Linear differential equations.

Definition 2.6. A differential equation of the form % + Py = Q, where P and Q are either constants

or functions of x is said to be linear differential equation of first order. For example, % +(sec’x)y =
sec® xtan x is linear differential equation of first order.

In order to solve the linear differential equation we use the method of separable variable. Linear
differential equation of first order is given by

d
d_y + Py = Q, where P and Q are either constants or functions of x. (2.13)
x

First we solve % + Py =0 by using separable variable method. For

d
f 7}/ =- f Pdx + c. where c is an arbitrary constant.

logy:—[de+c’.
'..y:efdexefc"
‘.'y:e—dexC'

Now differentiate on both sides with respect to x we get,

e oo tve .

d
e (dx+ y .
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d d
,',a(yefpdx) :efpdx(d—z+Py):0. (2.14)

Since e/ P4% £ 0 we multiply equation (2.13) by e/ 4% on both sides we get

d

. d S Pdxy _ ) Pdx
S x (ye ) =Qe .
By integrating on both sides we have

[%(yefpdx)dx:f()efpdxdx+c.

yef Pdxgy = f Qef Pdx g x+c, where c is an arbitrary constant. Which is the general solution of the given differentia

Remark 2.7. Here we can solve the equation by multiplying the given differential equation by e/ Pdx
and hence we call e/ P4 an integrating factor denoted by 1. F then here I.F = [ e"?*. Therefore the

general formula for finding the solution of linear differential equation is given by
y(.F) =fQ(I.F.)dx+c.

Examples 2.8. (1) Solve: (x + 1)% +2y=1.
Solution: To convert the given differential equation in general form of the linear differential equation

we divide both side by (x +1).
~dy 2 1

Sty
dx x+1 x+1

Compare this with equation (2.13) we get P = % andQ = 2=

x+1°

ol Pdx _ efﬁdx — p2loglx+1) _ (x+1)2
Now we know the general formula for finding the solution of differential equation is
yedex :erdexdx.
By substitutes values we get

1
y(x+ 1)? =f—1+x(1+x)2dx+c.

2
yx+1)?%= | (x+Ddx+c= x?+x+c.

2
X
yx+1)?%= > + x + c¢. Which is a general solution.

) Solve: (1+ y*)dx = (tan"' y— x)dy.
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In the given differential equation the term containing x is 1 with degree 1. Therefore the equation can
be converted to a differential equation which is linear in x given by vt Px=Q.

dx 1 tan~!y
L—+ x=
dy 1+y? 1+ y?

tan”!y
y2 and Q = —=.

Comparing this equation with general form we get, P = 5 Ty

T
1 —
S IF= efpdy = efﬁdy — etan ly‘

Now put this value in general formula given by xel Pdy = erdeydy we get

xetan_lJ’:f—tan Y jran” ydy+c
1+y

where c is an arbitrary constant. Now for right hand side integration we taketan™'y = t, =L, = dt we

get

’ 1+y

-1
- xe? y=ftetdt+c.
By integrating by parts we get
xe™ 'V = re —fletdt+c.
1 -1
coxe® Y = (tan"ly—1)e® YV 4c

which is a general solution.

2.5 Bernoulli’s differential equations.

Definition 2.9. A differential equation of the form 7 T Py =Qy",n € R\ {0} is said to be Bernoulli’s
differential equation

In order to solve Bernoulli’s differential equation we will use the method of solving linear differential
equation. Bernoulli’s differential equation is given by

ﬂ+Py:Qy",n€IR\{0}. (2.15)
dx

Divide both sides by y" we get y~ d p Y 4+ y1="P = Q. Now multiply by (1 — n) both sides we get

d 1-n
(l—n)y +(1 ny "P=(01-n)Q. (2.16)
Now put v = y(1 n) and d” =(1-n) y 1n equation (2.16) we get
dv
—+(1-mPr=(1-n)Q 2.17)

dx
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Which is linear in variable v and can be solved by method of linear differential equation. Hence

substitute
- [E = ¢/ Pdx _ p[0-n)Pdx

in equation ve/P4* = [Qe/Pdx 1 ¢

- pel-mPdx _ f(l _mQelUmPdx g

yl—nef(l—n)de _ f(l _ n)Qef(l—n)dedx+ c.
where c is an arbitrary constant . Which is a general solution.

Examples 2.10. (1)Solve: x% +y=x3y5
Solution: The given differential equation is not linear in x also not linear y. To convert it into Bernoulli’s
form we divide the equation by xy® we get

d 1
-64Y | Y =2 (2.18)

ydx X

c.puty®=vand —5y‘6% = % in equation (2.18) we get % - %v = —5x? which is linear in v. Hence

comparing with general form of linear differential equation we get P = —% and Q = —5x%. Now
LE=e/Pdx= ol 3dx = x5,
Now formula for solution is given by
vel Pdx :erdexdx+c
where c is an arbitrary constant.
y_Sx_5 = f —5x2x%dx+c¢

5 5 9 _ . , o .
Ly PxT = Ex 2 4 ¢, where ¢ is an arbitrary constant. Which is a general solution.

LAy 2
(2) Solve: x 7 — y = y“logx.
Solution: To convert this equation in form of Bernoulli’s differential equation we divide both sides by x
we get

dy 1 logx ,
ax YT x U
Now comparing with the general form of Bernoulli’s differential equation % +Py=Qy", wegetP =

1., _ logx . _ . L.
-+ Q=== with n = 2. Therefore the solution is given by

ylnel0-mpdx _ f(l _mQelU-mPdx | ¢
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1
.'.y_lx:f—l%xdx+c.

1
—flogxdx +c = —[logxx— f ;xdx] +c.
.. x=y(c+ x—xlogx). Which is a general solution of the given differential equation.

Remark 2.11. The general form of Bernoulli’s differential equation % + Py =Qy"; neR\{0} is given
by
f (y) + f»P=Q.

In order to solve this we put u = f(y) we get f’(y) 7 In general form we get L+ Pu=Q, which is
linear differential equation. Let us see the followmg examples to understand.

Examples 2.12. (1) Solve: siny% +xcosy=x.

Solution: Here u = cosy and % = —sin y%. Substitute these values in given differential equation we
get

du

——Xu=-x.

dx

Which is linear differential equation in variable v. Therefore solution is given by

u(I.F.)=fQ(I.F.)dx+C.

e = f( x)e2 dx+c.

x2

ez . Which is a general solution.

1
cosy—z

) Solve: d Y+ 2logy=2(logy)?.
Solution: Divide both sides by y we get

Ldy +11 (! )
——+—lo ——0
ydx gy gy

Now put u=1logy, we get = d_y Z Substitute these values in above equation we get

du u u? ldu 11 1

dx x «x wdx xu x

. Which is in the form of Bernoulli’s differential equation. By putting % = t and solving it we get
(logy)~! = 1+ cx which is general solution of given differential equation.

Exercise-II1

Identify type of the following differential equations and solve them.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
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dy — Qi C oy — Qi —sinx
7z T ycosx=sinxcosx (Ans: y=sinx+ce -1)

dy
dx

. 2
isy=1+2e™*)
dy _ s
7x T ytanx =secx. (Ans: y=sinx+ ccosx.)
2..dy _ v, — —tanx
cos“xz-+y=tanx. (Ans:y=tanx—1+ce )

(1+x¥)dy=(tan ' x—y)dx. (Ans: y=tan 'x—1+ce @0 %)

) x% +2y=x*logx. (Ans:y= %Zlogx— X 4 ox2)

16
dy _ . pein o — +
7 T ycotx =5e°“*. (Ans: ysinx = —5e°***¢,)

% + 2ytanx = sin x,also obtain particular solution with y = 0 when x =

secx+c; PS=ysec’ x =secx—2)
(x+2y3)% =y. (Ans:x= y3 +cy.)

xlogx® + y=2logx. (Ans: ylogx = (logx) + c.)

2

% +ytanx = y3 secx. (Ans:cos“x= yz(c+2sinx))

2
xy1+xy)% =1, @Ans:il=2-y?)+ce7 )
4 4 ytanx = €%, (Ans: y* =cos”x[c+logtan (5 +3)])

3

seczy%+xtany=x . (Ans:tany = x> -3x?>+6x—6+ce %))

<2

(x*y3+xy)dx=dy. (Ans:y '=2-x*>+ce2 )
% +ycosx=y3sin2x. (Ans: y~2 =2sinx+ 1+ ce’s"¥)

x% =y—7¥. (Ans:4c’x=(y—1-c?x)?2)

3d

X d_i_x2y+y4:0. (Ans: y3(3x+c) =x3)

% +ylogy=xye*. (Ans:xlogy=(x—1)e*+c.)

4
3

. == +2xy =2x, also y =3 when x = 0 obtain a particular solution. (Ans: y=1+ ce ™ and PS.

(Ans: ysec2 X =
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2.6 Exact differential equations.

Definition 2.13. A differential equation M(x, y)dx + N(x,y)dy = 0 is said to be exact if there exists a
function f(x,y) such thatd|f(x,y)] = Mdx+ Ndy. That is,

of of
- ——dy=Mdx+Ndy.
6xdx+6ydy dx+ Ndy

In other words if a differential equation can be obtain by direct differentiation of its solution, then we
call it an exact differential equation.

Necessary and Sufficient Condition for differential equation M (x, y)dx + N(x, y)dy = 0 to be exact:

Theorem 2.14. The necessary and sufficient condition for the differential equation M(x, y)dx+N(x, y)dy =

0 to be exact is
0M ON

dy  ox’
Where %i;[ and %%’ denotes the partial derivatives of M and N with respect to y and x respectively.

In order to solve an differential equation of the type M(x, y)dx + N(x, y)dy =0, first check the condi-

tion of exactness, ‘%’ = %—])\C’. If the condition satisfied, then the given differential equation is exact and

solution is given by

Mdx+ f ( Terms in N which are independent of x ) dy = c.

Yy constant

Where c is an arbitrary constant.

Examples 2.15. (1)Solve: (x* — ay)dx + (y*> —ax)dy =0.
Solution: Here M(x,y) = x* — ay and N(x,y) = y* — ax
~O0M ON

"3y z—aanda:—a.

Therefore the given differential equation is an exact differential equation. The solution is given by

f Mdx+ [ ( Terms in N which are independent of x ) dy = c.

y constant

f (xz—ay)dx+fy2dy:c

y constant

3 3

x y
S ——ayx+—=c.

3 AT

x® +y3 —3axy = 3c. Which is a general solution.
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dy | ycosx+siny+y _
2 Solve: dx + smx+xcosy+x =0

Solution: We write this equation in the form M(x, y)dx+ N(x,y)dy =0, we get (ycosx+siny+ y)dx +
(sinx+xcosy+x)dy =0. and also M(x,y) = ycosx+siny+y, N(x,y) =sinx + xcosy + x.

oM + +1
.. —— =C0SX+CO0S =—.
oy y 0x

Therefore the given differential equation is an exact differential equation. The solution is given by

f Mdx + f ( Terms in N which are independent of x) dy = c.

Yy constant

(ycosx+siny+y)dx+f0dx =c.

y constant

c.ysinx+ xsiny + yx = c. Which is a general solution .

Remark 2.16. If condition 5y M 9 a +» then the given differential equation is not exact. In this case, if
there exist some function f(x, y) of two variables such that

FOo,MIM(x,y)dx+ N(x,y)dy =0]

become exact, then f(x,y) is called an integrating factor denoted by 1.F. For example, the differential
equation xz + 2y + 3x =0 is not exact, but by multiplying with x we getx 24y + 2yx+3x? =0 which is
an exact differential equation. Thus, here integrating factor is x.

Rules for Integrating factor for M(x, y)dx+ N(x, y)dy = 0:

1. If M(x,y)dx + N(x,y)dy = 0 is homogeneous differential equation with Mx + Ny # 0, then
integrating factor will be m

oM _ ON

2. If = ay % is only function of x say f (x), then e/ /™4 will be an integrating factor.

oM _ ON

3. If 2" is only function of y say g(y), then e/ 85)4Y will be an integrating factor.

4. Ifgiven differential equation is of the form fj (x, y) ydx+ f>(x, y)xdy = 0, then integrating factor
will be —— Mx Ny where Mx— Ny #0.
Examples 2.17. (1) Solve:(x* + y* +2x)dx+2ydy = 0.
Solution Comparing the given diﬁ”erential equation with M(x,y)dx+ N(x,y)dy =0, weget M(x,y) =
x? +y? +2x and N(x,y) = 2y. Here ;é a - therefore the given differential equation is not exact.
oM _ ON

Notice that, ** =1 which is onlyfunctzon of x say f(x). Hence I.F. = e/ f®dx = ¢x.

LF[(x* + y* + 2x)dx + 2ydy = 0] which is now reduced to an exact differential equation.
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Now, e*[(x? + y? +2x)dx +2ydy) = d((x* + y*)e*) =0

Thus, the solution is fex[(x2 + y2 +2x)dx+2ydy] = fd((x2 + yz)ex) = ¢, where c is an arbitrary con-
stant. . (x* + y*)e* = c is a general solution.

(2) Solve: (xysin(xy) + cos(xy)) ydx + (xysin(xy) — cos(xy))xdy = 0.

Solution: Comparing the given differential equation with M(x, y)dx+ N(x,y)dy =0, we get M(x, y) =
(xysin(xy) + cos(xy))y and N(x,y) = (xysin(xy) —cos(xy))x. Here %‘f = x2y?cos(xy) + yxsin(xy) —
yxsin(xy) +cos(xy) # x2 y2 cos(xy) +3yxsin(xy) —cos(xy) = %\g, therefore the given differential equa-
tion is not exact. Notice that, it is of the form fi(x,y)ydx + fo(x, y)xdy = 0, therefore integrating factor

will be MxlNy = ZXyCés(xy), where Mx— Ny #0.
1
S LEIM(x,y)dx+ N(x,y)dy] = m[(xysin(xy) +cos(xy))ydx + (xysin(xy) — cos(xy))xdy]

is now reduced to exact differential equation. Thus, solution is given by,

y 1 1
=tan(x )+—dx—f—d =logc,
fyconsmnt 2 Y 2x 2y Y 8

where c is an arbitrary constant.

| 1 1
_.'%%C(xyh-glogx—zlogy:logc.

X
.. logsec(xy) + log; =2logc

X= c’y cos(xy), which is a general solution.

(3)Solve: xzydx — 3+ y3)dy =0.
Solution: Comparing the given differential equation with M(x, y)dx+ N(x,y)dy =0, we get M(x, y) =
x2 yand N(x,y) = —(x3+ y3). Here %iy/[ =x%#-3x%= %\C’, therefore the given differential equation is

not exact. Notice that given differential equation is homogeneous differential equation. Hence, I.F =
1  _ -1
Mx+Ny = y*-

-1
. LE[M(x,y)dx+ N(x,y)dy] = o (xydx— (x> +y¥)dy)

is now reduced to exact differential equation. The solution is given by

2

. 1

—xdx+f —dy=logc,
y y

y constant

where c is an arbitrary constant.
3

-X
_3y3 +logy=logc.

—x3
. logy=logc+ F

3
X
c.y=ce®*, which is a general solution.



Exercise-IV

1. Check the exactness of the following differential equations and solve it.
1. (x*-2xy?>+yHdx— 2x*y—4xy3 +siny)dy. (Ans: x°-5x?y*>+5y*x+5cosy=c.)
2. (sinxcosy+e*)dx+ (cos(xy)x?>+e¥)dy=0. (Ans: e*—cosxcosy+tany = c.)
3. (xycos(xy)+sin(xy))dx+ (cosxsiny+sec? y)dy=0. (Ans: xsin(xy)+e’ =c.)
4. 2xy+y+—tany)dx+ (x> —xtan® y+sec’® y)dy=0. (Ans: x>y +xy—xtany+tany=c.)
5. (yzexy2 +4x3)dx + (ZchexJ’2 -3y%)dy =0. (Ans: eV 4 xt— y3=c)
6. (x> +y?—a®)xdx+ (x*-y>-b*)ydy=0. (Ans: x* +2x%y? — y* —2a’x*> -2b%y* =c.)

7. ysin2xdx=(1+y*+cos’x)dy. (Ans:3ycos2x+6y+2y°=c.)

8. 2y—’scdx+yz}fxzdyzo. (Ans: x* - y* = cy®))
9. [y(1+%)+cosy] dx+ (x+logx—xsiny)dy. (Ans: y(x +logx)+xcosy=c.)
10. (sinxsiny +sec” x)dx + (tan® y —cos xcos y)dy =0. (Ans: tanx—cosxsiny+tany—y=c.)

2. Solve the following differential equations using integrating factor.

1. (xysin(xy)+cos(xy))ydx+ (xysin(xy) —cos(xy))xdy =0. (Ans: x=cycosxy.)

3

2. X*ydx—(x3+y>dy=0. (Ans:y:ce;?.)

3. (y+y>-ydx—(x+xy>-y)dy=0. (Ans: x+xy+ylogy—xy*=cy.)
4. ydx+(y—x)dy=0. (Ans: yefzc.)

5. (x*y-2xy?)dx+3x*y-x3)dy=0. (Ans: x—2ylogx+3ylogy=cy.)

20
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Index 3

Differential Equation of First order
and Higher degree.

The general form of differential equation of first order and higher degree is

dv\" d n-1 d n-2 d
(d_ic/) +P1(d—i) +P2(d—i) +...+Pn_1d—§+Pn:0.

Where each P; is a function of x and y. If % = p, then the general form reduces to
pt+ P p T 4 P+ Py ip+ P, =0.

Hence it also can be written as F(x, y, p) = 0. In this chapter we study following methods of solving
differential equation of first order and higher degree.
Method of solving differential equation of the form F(x, y, p) = 0.

1. Differential equations which are solvable for p.

2. Differential equations which are solvable for x.

3. Differential equations which are solvable for y.

4. Clairaut’s differential equations.

5. Lagrange’s differential equations.
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3.1 Differential equations which are solvable for p.

Suppose we can write the differential equation F(x, y, p) = 0 of degree n in the form

(p=fAl,yNp-Lfalx,y)(p-f3,) - (p—fulx,y)) =0. 3.1

Now comparing each factor with zero we get p— f; (x, y) =0, where i = 1,2,..., n. Which is linear differ-
ential equation. Suppose solution of p — f;(x, y) = 0 is given by F;(x, y, ¢c;) = 0. Where c; is an arbitrary
constant. Instead of taking different c;’s in the general solution of p — f;(x, y) = 0 if we take only one ¢
in all, then it makes no difference in general solution. Therefore general solution p— f;(x, y) = 0 will be
Fi(x,y,c) = 0. Then general solution of equation (3.1) is given by F;(x, y,c)F2(x, y,¢)--- Fy(x,y,¢) = 0.
Thus, differential equation of n degree and first order having linear factor p — f;(x, y) = 0 are known
as solvable for p.

Examples 3.1. (1)Solve: xyp® + (x*> =2y*)p* —2xyp =0
Solution: The given differential equation is of degree 3 and therefore it has three linear factor.

plxyp? + (x* —2y*)p—2xy] = 0.

p[xyp2 + x2p —2y2p -2xy]=0.
Spxp-2y)(yp+x)=0.
Comparing these three linear factor with zero we get
1. p=0 = y—-c=0.

2. xp-2y=0 = %:2% — y=cx’.

3. yp+x=0 = ydy+xdx=0 = x*>+y*-2c=0.

Therefore, the general solution is given by multiplying these three solutions of linear factors of given
equation. . (y—c)(y — cx?)(x% + y2 —2¢) =0. Which is a general solution.

LAy _dx _x_Y
(Z)SOll/e. ax d_y = ; *

Solution: put p = d—i we get p — % =2 L
2 y X
+ ———|=-1=0.
p P(x y)
Ap+ L) [p=2) =
..(p+x) p y)—O.

Now comparing the linear factors with zero we get

1. %+%:0 — xdy+ydx=0. = d(xy)=0 = xy=c
2. %_%:O = Xdy_ydx:(). - x2—y2:c
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Thus, the general solution can be obtained by multiplying the general solutions of the linear factors of
given differential equation.
(xy—o)(x*~y*—¢)=0.

Which is a general solution.
Exercise-V

Solve the following differential equations.
1. pP>—(x+3y)p+2y(x+y)=0. (Ans. (y—ce *)(x+y—1-ce*)=0.)
2. p>?-7p+10. (Ans. (y—5x—c)(y—2x-c)=0.)
3. pp+y)=x(x+y). (Ans. (2y—x2 +a)(y+x+ ce *-1)=0.)
4. yp®’+(x—y)p—x. (Ans. (x—y+c)(x>+y*+¢)=0.)
5. pP+2xp?—y*p?-2xy’p=0. (Ans. (y—c)(y+x*>—c)(xy+cy+1)=0.)
6. p>+2pycotx—y*>=0. (Ans. y(1+cosx)=rc.)
7. x2p2 +xyp— 6y2 =0. (Ans. (y— cxz)(x3y— c)=0.)
8. ¥’p?—x*=0. (Ans. (*+y*>+c)(x*—y*+¢)=0.)

9. p2+2p0082x—sin2x:0. (Ans. 2y +2x+sin2x+c¢)=0.)

3.2 Differential equations which are solvable for y.

If the differential equation of the form F(x, y, p) = 0 can be written as y = f(x, p) =0, then it is said to
be solvable for y. In order to solve these types of differential equation we differentiate with respect to
X we get

ay _ _QJFﬁ@:p( @)_ 3.2)

dx P7 ox dp dx Y P iy

Which is in variable p and x. Hence its solution is given by g(x, p, ¢) = 0. By eliminate p from equation
(3.2) and g(x, p, c) we get function ¢(x, y, c) which will be the general solution of the given differential
equation. If it is not possible to eliminate p, then general solution can be obtained by taking x =
Fi(p,c)and y = F>(p, ¢). Where cis an arbitrary constant. Let us see following examples to understand
this method.

Examples 3.2. (1).Solve: xp?> —2yp+ax =0
Solution: Here, y = %x p+ %“—lj‘ ; by differentiating with respect to x we get

ﬂ_l 1 @ a axdp

- t———
dx 2P 7 2% ax 2p 2p%dx
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o1 +(1x ax)dp+1a
PE5PTS p*)dx 2p

ax\dp a 3 o dp dp
p:(x—F)E+;:>p -p xa+axa—ap:0.

dp
. 3_ — — —_
c(p a)(p X xJ—O.

dp 3
p—x—=0 —a=0.
p xdx orp°—a
. dp

= x:lo =logx+logc
'p_x gp =log gc.

. p=CX.
Now, substitutep=cxiny = %xp + %% we get, y = %cx2 + %% Which is a general solution.

(2)xp—y+x% =0.

Solution:The given equation can be express in the form y = f(x, p). Therefore it is solvable for y. y =
3
xp + x2. Differentiate with respect to x we get,

d
p 1 dp 3
=p+x—+- —+—==0
PP 2 T A Tk
31rd
fd +Ef7=C:p+3ﬁ=C
p=c-3Vx.

L . . ; . 3
Now to eliminate p, substitute its value in equation y = xp + x2 we get,

y=cx— 2x2. Which is general solution.
(3) Solve: x +2(xp—y) + p*> =0.

Solution: The given equation can be express in the form y = f(x,p). Therefore it is solvable for y.
y= %x +xp+ %pz. Differentiate with respect to x we get,

dy 1 dp dp
E_p_2+p+xdx+pdx'
dp 1
S(x+p)—+-=0.
x p)dx 2

— dp _ d
Now put x+p=uwegetl+ 4 =9
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du 2u-1 2u
L = fr—
dx 2u

N

1
u+510g(2u—1) =x+c.

du=dx.
1

2u
1
1+ )+ dx+c.
2u—1

1
,',x+p+§log(2x+2p—1) =x+c.

1
C.2p+ 510g(2x+2p— 1) =c.

C2x+2p—1=¢’P7¢

1>
Sx=—eP+1-p.
) p

Here we can not eliminate p from above equation. Hence, the general solution can be obtained from
y=3x+xp+yp®andx=1e’P~C+1-p.

3.3 Differential equations which are solvable for x.

If the differential equation of the form F(x, y, p) = 0 can be written as x = f(y, p) =0, then it is said to
be solvable for x . In order to solve these types of differential equation we differentiate with respect to
y we get

dx :ﬂ+%@—p(, ,@). (3.3)

dy "oy Topay T\ PP ay
Which is in variable p and y. Hence its solution is given by g(y, p, ¢) = 0. By eliminate p from equation
(3.3) and g(y, p, c) we get function ¢(x, y, c) which will be the general solution of the given differential
equation. If it is not possible to eliminate p, then general solution can be obtained by taking x =
Fy(p,c)and y = F>(p, ¢). Where cis an arbitrary constant. Let us see following examples to understand
this method.

Examples 3.3. (1)Solve: y*p? —3xp+y=0.
Solution: The given differential equation is of the form x = f(y, p), where f(y,p) = % (% + yzp). Now
differentiate with respect to y we get

dx 1 1 ydp ,dp
B3—=3—==——-=5—+2yp+y —.
dy 'p p p*d dy
2 y\dp
2yp——+(y2 —)—20.

p p?) dy

d
,',2;9(yp2 -1 +y(yp2 — Dd_s =0.

dp

2
-D|2p+y=—]|=0.
(yp™-1|2p ydy)
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We ignore yp® — 1 = 0 we get and consider 2p + yZ—y =0.

d d
SRS,
P y
. logp+2logy=logc.
pY=c=p=—
o el

Hence, substitute value of p we get y3 — 2cx + ¢ = 0. Which is a general solution. (2)Solve:x = p + %.
Solution: It is easy too see that this differential equation is solvable for x. By differentiating with respect
to y we get

odx 1 _dp 1dp

dy p dy pPdy’

(5% = (5
Sl = = dp=dy.
p p?) dy p

o-2ar- [aree

2
Sy = %—logp+c.

Where c is an arbitrary constant. Here, it is difficult to eliminate p. Therefore, general solution can be
P

obtained by takingx = p + %; y=5

logp +c.
Exercise-VI

1. y:(1+p)x+p2. (Ans:x:—2p+2+ce‘p;y:2—p2+c(1+p)e"’.)
2. xp—y+vx. (Ans:y=cx+2yx.)

3. y=2p+3p% (Ans:ix=2p+3p%y=2logp+3p+c.)

4. y+px=p2x4. (Ans:xy:czx—c.)

5. ¥*p?-3xp+y=0. (Ans:y®—3cx+c?=0.)

6. y=2px-—p°. (Ans:x:§p+cp‘2;y:%p2+2—p‘.)

7. y2 + p2 =0. (Ans:y==sin(x+c).)

8. p’y+2px=y. (Ans:y*=2cx+c?)

9. y—2px=tan~'p. (Ans:2y/cx+tan"lc.)

10. xp?—yp-y=0. (Ans:c(1+p)eP;y=cp?cP.)

11. y=x+atan"'p. (Ans:ix+c=%[log(p—1)—3log(l+p?) —tan"! p|;y=x+atan™! p.)
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+c.)

12. x*>=a’(1+ p?). (Ans:x=a\/1+p%y=45|py1+p?=log(p+\/p+/p*+1)

2
13. p2 =(p-1y. (Ans:x=log(p—-1)+ ﬁ +cy= %.)

p

1+p2+tan Ipiy=c-—)

14. x=—L5 +tan"'p. (Ansix=x= o7

1+p

15. p2_4xyp+8p2 =0. (AnS C(C 4.7C)2 64y)

3.4 Clairaut’s differential equations.

Definition 3.4. A differential equation of the form y = px + f(p) is known as Clairaut’s differential
equation.

It is easy to see that Clairaut’s differential equation y = px + f(p) is solvable for y. Hence, in order to
solve we differentiate with respect to x on both sides we get,

dy

E—p p+x +f()

, dp
= (f (p)+x)dx =0.

= % =0orx+f'(p) =
By taking the case d =0wegetp= d < = ¢. Where c is an arbitrary constant. Thus, by eliminating
p from Clairaut’s equation we have the family of straight lines given by y = cx + f(c), as the general
solution of Clairaut’s differential equation. The later case x + f'(p) = 0 defines only one solution y(x)
, so-called singular solution, whose graph is the envelope of the graphs of the general solutions. The
singular solution is usually represented using parametric notation, as (x(p), y(p)), where p represents

dy

dx*

Examples 3.5. (1) Solve: x*(y — px) =

Solution: The given differential equation is not Clairaut’s differential equation, but by taking x*> = u
and y? = v we can convert it into the Clairaut’s form. x> = u = 2xdx=du, and y* = v = 2ydy =
dv. - L4y —dv x4y Now given equation reduces to

c-xdx ~ du p= ydu:
( ) % ( )
4 du y 2\du)
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Which is Clairaut’s differential equation. Hence, the general solution can be obtained by taking % =c.
Hence v = cu+ c® and y? = cx* + ¢? is the general solution.

(2) Solve: sin pxcos y =cospxsiny + p.

Solution: The given differential equation is not of the Clairaut’s form. Notice that,

sinpxcosy—cospxsiny=p = sin(px—-y)=p

px—y=sin"1p.
y = px +sin! p, which is in Clairaut’s form.

1

p=c = y=cx+sin " ¢, which is a general solution.

(3)Solve: e4x(p -1+ ezyp2 =0.
Solution: The given differential equation is not of the Clairaut’s form, but by taking e** = u and e*’ = v
we can convert it into Clairaut’s form.

dv (dvy =
v=u——~H+ (—) . Which is in Clairaut’s form.
du \du
dv 2 2y 2x |, 2 .y .
i ¢ = v=uc+c" = eV =ce™ + . Which is a general solution.
u

3.5 Lagrange’s differential equation.

Definition 3.6. A differential equation of the form y = x f(p) + F(p) is known as Lagrange’s differential
equation.

It is easy to see that Lagrange’s differential equation is solvable for y. Hence, in order to solve this
differential equation we differentiate with respect to x on both sides we get

av_ o dp o dp
dx PP XL g+ Fp o

! ! d
.'.p—f(P)=[xf(P)+F(p)]d—Z.
cdx _xf'(p)+F'(p)
dp p-flp)
dx_ ') Fp)
dp p-f(p) p-fp)

Which is linear in x and p. So it can be solved by method of linear differential equation % +Py=0Q,
where P and Q are functions of x only.

Remark 3.7. 1. Anequation ofthe formx =y f(q)+F(q), whereq = Z—; is also known as Lagrange’s
differential equation and also can be solved by using method to solve differential equation which
are solvable for x.
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2. By taking f(p) = p in Lagrange’s differential equation we get Clairaut’s differential equation.
Thus, Clairaut’s differential equation is a particular case of Lagrange’s differential equation.

Examples 3.8. (1)Solve: y =2px -1 p?.

Solution: The given differential equation is solvable for y. In order to solve we differentiate with respect
to x on both sides we get,
dp 2 dp

=p=2p+2X——=-p——

y
dx dx 3V ax

dp dx

) dx pd_ 2
Cdx L2 2 2
dp p p 3

Which is linear in variables x and p. Thus, solution can be obtained by,

)=
x-2p|=

x(I.F) = / QU.F)dx+c

2
Where I.E. = ¢/ 7% = ¢2l08p = p?andQ=%

2 3
- xp?= f p?dp+c= —% + c. Where c is an arbitrary constant.

2 N c
SX=-—p+—.
9” p?
Substitute this value of x in given equation we get y = s p~ +

2, 2¢c ;
Hence,x— 9p+ Sandy= 9p +o s
a general solution.

1
9

Exercise:VII

Solve the following differential equation.
1. y=px+p—-p? (Ans:y =cx+c—c?)
2. y=px+ %.(Ans:y =cx+7)
3. y=xp—-p?+logp.(Ans:y = cx - c®> +logc.)
4. (x—a)p?*+(x-y)p—y=0.(Ans:y = cx — am J)
5. ¥*p®—2xp+y=0.(Ans:y* = cx - %03.)
6. x+yp=a+bp.(Ans:x? + y*> = 2(ax+ by +c).)

7. p2—6px+3y=0. (Ans:x:%p-k%;yz

o[,

+

SR

)

1 2p-1
8. x+y= (+p) (Ansx—(1p2+ky p(1+_£7)2 -k



9. p*>=(p-Dy(Ans:x =log(p—1) + ﬁ +Gy= pp—_zl.)
10. e¥*(p—1)+ p3e?’ =0.(Ans:e? = ce* + c3.)

11. (px—y)(x—py) =2p.(Hint: x> = u, y*> = v). (Ans:c®x?> —c(x> +y*> - 2) + y*>=0.)
12. p3>—xp—-y=0.(Ans:x = %p2+\% and y = %p3—k\/ﬁ.)

13. p?(x—5)+(2x—y)p—-2y=0.(Ans:y = cx — ?_Ji')

14. p?+2pcos2x —sin®2x = 0.(Ans:(2y +2x +sin2x + ¢) (2y —2x +sin2x +¢) = 0.)

3,3
15. y2 =xyp+ %.(Hint: x%= u, y2 = v).(Ans:y2 =cx%+ c3.)

16. y*(y—xp) = x*p? Hint: x=1,y= %).(Ans:% =<+c2)

Index 4

Higher Order Linear Differential
Equation

Definition 4.1. If Py, P»,..., Py, X are functions of x or constants, then

dny dnfly dn72y
dxn P dxn-1 P2 dxn—2

+-+Pry=X (4.1)

is called n'"* order linear differential equation.

In equation (4.1) if X = 0, then equation is called homogeneous linear differential equation, otherwise
it said to be non-homogeneous differential equation.

30
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Solution of linear equation (4.1) can be separated into two parts.
(a) Py, Ps,..., P, are constants.
(b) Py, Po,..., P, are functions of x.

In this chapter we discuss the different methods to solve linear differential equation of type (a).

Theorem 4.2. Ify; and y, are solutions of equation
d ny d n—1 y d n—Zy
+
dxn dxn-1 dxn—2
then c1y1 + c2y» (= u) is also its solution, where c; and c, are arbitrary constants.

Proof. Since y = y; and y = y» are solution of (4.2),
d"y1 dn—l 1

dx" P dxn-1 +ePry1 =0 (4.3)
dny2 dn—1y2
+P +---P =0 4.4
Then Cy1+C)2 c1y1+Cy
A" + P A1 +"'Pn(01y1+62y2)
dnJ/I dn—ly1 dnyz dn—ly2
=0 dx + P 1 +---Pny1) + cz( a7 + P a1 +--Puyo
=c1(0)+c2(0)=0 [by (4.3) and (4.4)]
dnu dn—l
Le TPt Pau=0 (4.5)
This proves the theorem. O

Since the general solution of nt order differential equation contains n arbitrary constants, it follows,
from the above, thatiif y;, y», ..., y, are n solution of (4.2), then ¢ y1 +co y2 +- -+ ¢, ¥ (= 1) is a solution
of (4.2). This solution is called the Complementary function (C.E) of equation (4.2).

If we denote the complementary

Suppose that y = v be any particular solution of

dny dn—ly
T +k e +okpy=X (4.6)
where ki, k2, ...k, are arbitrary constants.
d"v a1y
Then W-i- 1m+"'knl}:X 4.7)
d"(u+v) d" Y u+v)

Adding (4.5) and (4.7), we have PP + k1 —— tkp(utv)=X
This shows that y = u + v us the complete solution of (4.6). Here y = v is called the Particular solu-
tion(P.L.) of (4.6).
.". The general solution (G.S.) of (4.6) is y = C.E. + PI.
Thus in order to solve the equation (4.6), we have to first find the C. E, and then the P I. . For a

homogeneous differential equation the C. F and G. S. will be same.
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4.1 Operator ‘D

To find the solution of linear differential equation, operator ‘D ‘ play very important role.
‘D’ is defined as follow

p-d pro 4"
Tdx’ T dx2 7 T dxn
dy d’y ., d'y
=2 =Dy; == =Dy, ..,—==D"
“dx y dx? J dxn y

With this notation the equation (4.1) can be written as
D"+P D" 4. 4P)y=X e f(D)y=X

where f(D)=D"+ PiD"l4...4P,, iea polynomial in D.

Thus the symbol D stands for the operation of differentiation and can be treated much the
same as an algebraic quantity i.e. f(D) can be factorized by ordinary rules of algebra and the factors
may be taken in any order.

4.2 Rule to find the Complementary function:

Consider the equation
dny an- 1 y
dxn " ldxnT
where ki, k, ...k, are arbitrary constants.
Then this equation in symbolic form is (D" + kD" ! +---+ k,)y = X. Its symbolic co-efficient
equated to zero i.e.

+-kpy=0 4.8)

D"+l D" 44k, =0

is called the Auxiliary Equation (A.E.).
Since it is an n" order polynomial equation in terms of D, it has n roots say m, my, ..., m,.

Case:1 If all the roots be real and different, then the G. S. of (4.8) is given by
y=cre™  + e  + -+ cpe™t

Case: 11 If two roots are equal (i.e. m; = my), then the G. S. of (4.8) is given by

nyx muyXx
1+ n

y=(c1+cx)e -4 cpe

If, however, the A.E. has three equal roots (i.e. m; = my = m3), then the G. S. of (4.8) is given by

myx X
+

J/Z(C1+sz+03x2)e "'+Cn€m”

Case: III  If one pair of roots be imaginary, i.e. m; = a +if, my = a —if, then the G. S. of (4.8) is
given by

y = e (c1cos(Bx) + cosin(Bx)) + c3e™ +--- + ¢ e"*
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Case: IV If two pairs of imaginary roots be equal i.e. m; = my = a +if8, ms = my = a — i, then the
G. S. of (4.8) is given by

y=e((c1+ c2x) cos (Bx) + (3 + cax) sin (Bx)) + cse™* + -+ + cpe™*

d’y d
Example 4.3. Solve d_xJZ} + d_ic/ -2y=0.

Sol. Let D = %. Then given equation reduces to (D> + D —2)y = 0.
ItsA.E.is D>+ D-2=0, i.e. (D+2)(D-1)=0whenceD=-2,1.
Hence the G. S.is y = c;e 2" + cpe! .

d? d
Example 4.4. Solve d_xJZ/ + 651_1 +9y=0.

Sol. Let D = %. Then given equation reduces to (D? + 6D +9)y = 0.
ItsAE.isD*+6D+9=0, i.e. (D+3)*=0whenceD=-3,-3.
Hence the G. S.is y = (c] + cox)e ™3,

Example 4.5. Solve (D} +D?+4D+ 4)y=0.

Sol. Here the A.E.is D3+ D?>+4D+4=0 i.e.(D*’+4)(D+1)=0 . D=-1,+2i.
Hence the G. S.is y = c;e™* + e%*[c, cos (2x) + c3sin (2x)] = ¢1e™ + ¢, cos (2x) + c3 sin (2x)

Example 4.6. Solve d4x+4x—0
ple 4.6. o =0.

Sol. Let D = %. Then given equation reduces to (D*+4)x=0.
ItsA.E.is D* +4 =0.

. D*+4D*+4-4D*=0
- (D*+2)*-(2D)?=0
 (D*+2+2D)(D*+2-2D)=0
- D*+2+2D=0 or D*+2-2D=0
—2+v-4 2+v—-4
D= or
2 2
. D=-14i or D=1+1i

Thus the G. S.is y = e~ '[c; cos (1) + ¢z sin ()] + e’ [c3 cos () + ¢4 sin (1)].
Exercise-I

Que:1 Solve the following differential equation.
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1.y"-2y'+10y=0 Ans. y = e*[c; cos (3x) + ¢ sin (3x)]
2.4y"+4y"+4y'=0 Ans. y=c1+(co+c3x) ez
3. — d3y +y=0 Ans. y=cle_x+e2 (czcos(‘[)+03sm(£))

dx® 2

a3y _d? d
4.ﬁ—3d—szl+3d—i/—y=0 Ans. y = (c1 + c2 X + c3x?)e”
5d4y+8d2y+16 =0 A (€1 + €2X) c08 (2) + (3 + €4) sin (2)

. — ns. y=(c1 + c2x) cos (2x) + (c3 + c4x) sin (2x

d4y 4y “x

=ev2 V2 _a_

6. dx4+a y=0 Ans y=ev2 (clcos(f)+0231n(\[))+e 2 (03cos(f)+c4s1n(\/§)).

d4
Que: 2 If d_tic = m4y, show that x = ¢ cos (mt) + ca sin(mt) + c3 cosh (mt) + ¢4 sinh (m1).

(Hint: Use sinhx = £~ and coshx = %)
4.3 Inverse Operator:
1. Definition: f_DX is that function of x, not containing arbitrary constants which when oper-
ated upon by f (D) gives X.
i.e. f(D) { —X }
! f(D)
1
Thus y = WX satisfies the equation f(D)y = X and is, therefore, its particular integral.
2. Lx= rxdx
- pX= 1 .
Let =X =y.
et DX ¥y
. b 1 _ . _dy
Operating by D, DBX =Dy. i.e. X==

Integrating both the sides w.r.t. x, we get y = [ Xdx.
1

Thus — X = [ Xdx.
D

3. D;—X ea’l‘er X dx.
Let Do aX =y. 1
Operating by D — a, (D—a)D_ =(D-a)y. :X:%—ay.
ie. % —ay = X, which is a linear equation in first order.

So solution is ye™** = [ Xe~**dx = y=e [ Xe dx.
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1
Thus X=y=e*[Xe “dx.
XY S
1
—¢
D2+2D-15

Sol. 1 er — 1 er

D?2+2D-15 (D+5)(D-3)
_ 1 L o

(D+5) (D-3)

1 1
= esx[e_3xe2xdx X:e‘”er_“xdx.)
(D+5) D-a

1 er
(D+5)

:_e—Sx[eSerxdx

__162x
7

2x

Example 4.7. Find

4.4 Rules for finding the Particular Integral

n n—ly
PP +k1d — o kny=X,

which in symbolic form is (D" + ky D" ' +---+ k,)y = f(D)y = X.

Consider the equation

1 1
X= X
D"+ kD"l 4+ ky f(D)

“PIL =

Case:1 WhenX = e, )

1 ax _ __ -~ ,ax
If f(a) #0, then f(D)e _f(a)e .

70 e = xf/ta) e, provideld f'(a) #0.
2

Iff(a)=0andf'(6l)=0, then f(lD)eax:x f”(a)e

Case:1I When X =sin (ax+b) or cos (ax+b).

If f(—a?) #0, then

If f(a) =0, then

ax provided f " (a) # 0, and so on.

sin(ax+b) = sin(ax+ b).

1 _r
J (0% - fa
3 sin(ax+b) = xW sin (ax + b), provided f'(-a?) #0.

If f(a) =0 and f '(a) = 0, then f(lD )sm(ax+ b) =x ﬁsin(mﬁ b), provided f " (-a?) # 0,

If f(—a?) =0, then

and so on.

Similarly if f(—a?) #0, then ——- f(DZ) cos(ax+Db) = —f(—laz)

cos(ax+Db).

1
cos(ax+b) = x———-cos(ax+ b), provided f "(—a®) #0.

1
—72) = _
If f(-a®) =0, then 7009 Fed
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1 1
If f(a) =0and f'(a) =0, then mcos (ax+Db) = xzm cos(ax+b), provided f "(-a?) #0,
and so on.
Example 4.8. Solve 4’y _ 5 ay +6y=et*
e dx* ~ dx
Sol. Here given differential equation is non-homogeneous. So general solutionis y=C. E + P L
d’y _dy
To find C. E ider th tion —5 -5 —+6y=0.
o fin consider the equation ——3 I F6y

d . . 2
LetD = Ix Then this equation reduces to (D= -5D +6)y = 0.
X

And A.E.is D?-5D+6=0. = (D-3)(D-2)=0. > D=3, 2.
Thus C. E = c; e + cpe?*.

1
And pl = R
D2-5D+6
=;e4x ..Leax:L ax
16-20+6 " f(D) fla)
1
— _e4x
2
Now G S.=C.E+P1. )
=>y=c e +ce?* + Ee“x
d’y _dy .
Example 4.9. Solve 6—= + 17— — 14 =sin (3x).
d x? dx
Sol. Here given differential equation is non-homogeneous. So general solutionis y=C. E + P L
d? d
To find C. FE consider the equation 6—y + 25_y +14=0.
d x? dx

d : . )
Let D = I Then this equation reduces to (6D“+25D + 14)y = 0.

X
AndAE.is  6D*+25D+14=0. > @3D+2)2D+7)=0. > D= -2, -1
2 7
Thus C. E=cje 3%+ e 2%,
1
And PL=—— in@x
6D2 +25D + 14
1 . 1 . 1 .
= sin (3x) ‘- ———sin(ax+b) = ———sin(ax+ b)
6(=9) + 25D + 14 f(D?) f(=a?

1 1 (5D +6)

~5 (5D-6) (56D+6)
1 (5D+6)

"5 (-45+6)
= — 755 [5Dsin (3x) + 6sin (3x)]

__1 :
= — 105 [15cos(3x) + 6sin (3x)]

sin (3x)

sin (3x)
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Now G.S.=C.E+P1I.

2 _7 .
=>y=cie 3 +cre 2% - 4(1)—5[15cos(3x) + 65in (3x)]

Exercise-II

Que: 1 Find the value of (i) mezx. (i) me_?’x. (ii) mcos&x).
(Ans.: G)-1e2 (i)}x2e (ifi) — & (2sin(2x) + cos (2x))
Que : 2 Solve the following differential equation.
1. (D3-6D?+11d-6)y =e > e 3 Ans. y=cie* +cpe** + e3> — 5 (2e7*" + e73%)
2. i—z +4% +5y =—-2cosh (x) Ans. y= e 2% [¢; cos (x) + ¢p sin (x)] — f—; - %x
3.(D+1)(D-3)%y=e3*+¢e%* Ans. y = (c1 + cx)e3" + cze™* + §x2 e + L%
4. % +2% +3x=sin(f) Ans. y = e " [c1 cos(V21)cpsin (v21)] + i[sin(t) —cos ()]
5. j—i‘z —4% +3y=cos(5x+3) Ans. y=cre’ +cped¥ - ﬁ [10sin (5x+3) +11cos (5x +3)]

6. (D?+3D +2)y = sin (3x) cos (2x) Ans. y=cie”" + cpe”* + gz [10cos (5x) — 11sin (5x)]

+35 [sin (x) + 2cos (x)]
7d—3y+2d—2y+d—y— T gsin(2x)  Ans. y =0+ (¢ + c30)e ™ — L e + 3 cos (2x) - 2 sin (2x)
A Tda? Tax ¢ Temet S y=atrieToxe 7 ¢ " 150 C08(eX) — o5 SInlax

Case: Il When X =x™.
Here PI = x™ = [f(D)]1x™.

f(D)

Expand [f(D)]™! in ascending power of D as far as the term in D™ and operate on x” by term.
Since the (m + 1) and higher derivatives of x" are zero, we need not consider terms beyond D™.
Note: Use the following formulae to expand [f(D)] ™.

() A-D)'=1+D+D?>+D3+--.

(2) 1-D)2=1+2D+3D?>+4D%*+---+(1+m)D" +---

3) 1-D)3=1+3D+6D?>+10D%+---+Y mD"™ +---

4 (1+D)'=1-D+D?-D3+D*-D%+-..

Case: IV When X = e**V, where V is a function of x.

eax — paXx V
f(D) f(D+a)
Case: V. When X is any other function of x.
Here PRI =

—X
f(D)
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If £(D) = (D—-mp)(D—-my)...(D— my), resolving into partial fractions,

1 A Ay Ay
= + +eeet .
f(D) D-my D-my D-m,
1
. PRI =——X.
fD)
[ Ay Ay Ay
D-m D-mp D-my,
=A X+ A X+---+A, X.
D-m —my - my

:A]emlexe_mlx dx+A2€m2x[Xe_m2x dx+...+Anemnx‘[Xe—mnx dx.

1
( X = e‘”er"” dx.)
D-a

This method is a general on and therefor can be applicable to obtain a particular integral in any given
case.

d*y d
Example 4.10. Solve CV ) 2 iox14
dx? dx

Sol. Here given differential equation is non-homogeneous. So general solutionis y=C. E + P L.
2

d d
To find C. FE consider the equation d_}z/ + d—y =0. ThenA.E. D*’+D=0. . DD+1)=0 = D=
X X
0,—-1.
C.E=c+ce™™
1 2
And PL = ————(x“+2x+4)

DD +1)
:l(D+1)_1(x2+2x+4)
D

1
:B(1—D+D2—D3+D4—---)(x2+2x+4)
1
:(B—1+D—D2+D3—--- (X* +2x+4)
1 2 2 2 2..2 3,.2
:B(x +2x+4)—(x“+2x+4)+D(x"+2x+4)—-D°(x“+2x+4)+D°(x“+2x+4)+---
=f(x2+2x+4)dx—(x2+2x+4)+(2x+2+0)—(2+0+0)+0
xS

:?+x2+4x—x2—2x—4+2x+2—2

3
=—+4x-4
3

3
X
ThusG.S. =C.E+PIL = y=cl+02e_x+§+4x—4
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Example 4.11. Find P. 1 of (D> —4D +3)y = ¢**sin (2x)

Sol.

1 4x .
Pl =——e™sin(2x)
D2-4D+3
1
=t e**sin (2x)
(D+4)2-4D+4)+3

4x 1 :
=" ————sin(2x)
D2+4D+3
1
=~  5in(2x)
(-4)+4D+3

4x

sin (2x)
D-1
4D +1
= — " s§inRx)
16D2 -1
4D +1
=¥ sin (2x)
65

e4x
= [4Dsin (2x) +sin (2x)]

4x
S [8cos (2x) +sin (2x)]

Example 4.12. Solve (D? +16)y = tan (4x)

Sol. Here given differential equation is non-homogeneous. So general solutionis y=C. E +P I
To find C. E consider the equation (D? +16)y =0. ThenA.E. D>+16=0 .. D=+4i
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. C.E =cjcos(4x)+ cysin(4x)

And P I = ———tan(4x)
D?+16
1 1
=— - — - | tan (4x)
8i |D—-4i D+4i
1 1
=— - tan (4x) — - tan (4x)
8i | D—4i D +4i
= i e4ixfe‘4ixtan(4x)dx—e‘4ixfe4ixtan(4x)dx ( ! X= e“foe_‘”dx.)
8i D-a
1 ; ]
== e4”f[cos (4x) — i sin (4x)]tan(4x)dx—6_4”[[608 (4x) + isin(4x)] tan (4x)dx
1 .
=3 e‘”xf[cos (4x)tan (4x) — isin (4x) tan (4x)]dx
—e X f [cos (4x) tan (4x) + i sin (4x) tan (4x)]dx
1 .
= e e4le[sin(4x)— i sin? (4x) cos (4x)]dx
_e—4ixf[sin (4x) + i sin® (4x) cos (4x)]dx
1 .
=% etix (/sin(4x)clx—ifsin2 (4x)cos(4x)dx)

_e X (fsin (4x)dx + ifsin2 (4x) cos (4x)dx)

1 [ 4l~x( cos (4x) ,sin3(4x))
__l e - +1

81 4 12
_pdix _Cos<4x>_.sin3(4x)) ( f neey £ _f”“(x))
¢ ( 4 D S f dx= 1
_ i sin3 (4x) (e4ix+e_4ix) _ cos (4x) (e4ix—e4ix)]
©8i 12 a1
1

+a3
sin” (4x) (e4ix 4 e—4ix) _cos (4x) (e4ix _ e4ix)
12 4

ThusG.S. =C.E+PRPIL = y:clcos(4x)+02sin(4x)+a

Exercise-II1

x3and (i) ———
D-2 D?2-2D+1

Que : 2 Solve the following differential equation.

Que: 1 Find (i) x2e3% (Ans.(i) - % (x3 + % + 37" + %) (ii)e% (x%—2x+ %))
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1. d2y+2Q+y 2x + x? Ans.y:(cl+czx)e_x+x2—2x+2
d x? dx
2 3
2.(D>-6D+9)y=e>*(1+x) Ans. y = (¢ +czx)e3x+e3x(x7 + %)
d2
B-d—)z/—y=x2—1 Ans. y=cie’+ce ¥ —1-x?
X
2x X
4.6D*-D-2)y=xe™* Ans. y=cje3 +ce 2
5. (D?-2D+3)y =cos (x) + x> Ans. y = e*[c1 cos (vV2x) + ¢z sin (vV2x)]
+75 [2cos (x) —3sin (x) +4x% + 182 + 8]

6.(D3—D)y:2x+1+4cos(x)+26x Ans. y=c1+ e’ + cze” " + xe* — (x%+ x) = 2sin (x)
X

e
7.(D*-1)y = e*cos (x) Ans. y=cie* +cre™* + c3cos (x) + ¢y sin (x) — - cos (%)
d2 d 3x
8.2 3°Y .y inEx) A %4 et + T (2x-3 2 2
A2 Cdx YT xe%* +sin (2x) ns. y=cret+ e+ —-(2x - ) + 35 €08 (2x) — 55 Sin (2x)
dzy e3x
9. —~ 12 +2y = x?e3* + e¥cos (2x) Ans. y=clcos(\/ix)+czsin(\/§x)+H(x2—112—1x+%)

ex

+— (4sin(x) —cos(x

17( (x) (x))
e2x

10. (D3+2D2+D)y=x2 e +sin? (x) Ans.y:cl+(02+03x)e_x+§(x — Ly

100 (3sin(2x) +4cos(2x))

ex
11. (D> -1y=xsin(x) + 1 +x%)e*  Ans.y=cie*+ce” X+E(2x —3x+9) — 3 (xsin (x) + cos (x))

Now we shall study two such forms of linear differential equation with variable co-efficient which can
be reduced to linear differential equations with constat co-efficient by suitable substitutions.

4.5 Cauchy’s homogenous linear equation

An equation of the form

n n-1

d y y
dx n—i_lc dxn—l

d
+ --+k,,_1xd—i/+kny=X (4.9)

where k's are constants and X is a function of x, is called Cauchy’s' homogeneous linear equation.
Such equation can be reduced to linear differential equation with constant coefficients, by putting

da
x=e' or t=logx. ThenifD:E

dy dy dt dy 1 dy
dx _di dx _di x ¢ Yax Y

1A French mathematician Augustin-Louis Cauchy (1789-1857) who is considered as the father of modern
analysis and creator of complex analysis. He published nearly 800 reserch paper of basic importance. Cauchy
is also well known for his contribution to differential equation, in finite series, optics and elasticity.




42 INDEX 4. HIGHER ORDER LINEAR DIFFERENTIAL EQUATION

i_i(ldy)__iﬂ ld(dy)dt 1dy ldzydt_l(dzy dy)
B B dx x2dt xdt®dx

¥ dx\xdt x2dt  xdt\dt drz  dt)
2 3

247y 347y
ie x° 1 > =D(D—-1)y. Similarly, x° e =D(D-1)(D—-2)y and so on.
x?

After making these substitution in (4.9), that results a linear equation with constat coefficients, which
can be solved as before.

d? d
Example 4.13. Solve xzd—xJz/ - xd—i +y=logx

Sol. Thisis a Cauchy’s homogeneous linear equation.
t ; dy 2 d zy d
Putx=¢', i.e. t=logx,sothat x— =Dy, x - = D(D-1)y,where D = T

) ] dx dx
Then given equation becomes

[D(D-1)-D+1]y=t or (D-1)?y=t¢ (4.10)

which is a linear equation with constant coefficients.

Its A.E.is (D—1)*=0whence D=1,1.

CE=(1+cbe.
1
AndPIL =———t=(1-D)%r=(1+2D+3D*+---)r=r+2.
(D-1)2

Hence the solution of (4.10) is y = (¢ + ¢» el +t+2.
Put ¢ =logx or e’ = x, we get

¥y =(c1 + c2logx)x +logx + 2 as the required solution of given equation.

d’y . dy

Example 4.14. Solve x*>—= +4x—= +2y=¢*
P dx? dx y

Sol. Thisis a Cauchy’s homogeneous linear equation.

d d? d
Putx=¢f ie t= log x, so that xd—i/ =Dy, xzd—x)z/ =D(D-1)y,where D = T

Then given equation becomes
[D(D—1)+4D+2]y=eet or (D2+3D+2)y:eet (4.11)

which is a linear equation with constant coefficients.
Its A.E.is D*+3D+2=0whence D=-1,-2.

S CE=cel+ge? =cx+cx?2
1 ‘ 1 1 1
And PI = e = o€ = _ e
(D?2+3D +2) D+1)(D+2) (D+1) (D+2)
1 ¢ 1 t

e

e — e
(D+1) (D+2)

' 1
= [e_tfetee dt—e_Zt/ 2t ge dt] ('.'—X: e“foe_“xdx.)
D-a

e
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:x‘lfexdx—x‘zfexxdx (- e=x)

=xle* —x?%(xe* - e

=x2e"

Hence the required solution of y = c; x™' + cox 72 + x2e*.

4.6 Legendre’s linear equation

An equation of the form

n n-1
Y

d"y -1
m"'kl(d)(f"‘b)n dxn_l

d
(ax+b)" + --+kn_1(ax+b)d—i/+kny:X (4.12)

where k's are constants and X is a function of x, is called Legendre’s?> homogeneous linear equation.
Such equation can be reduced to linear differential equation with constant coefficients, by putting

ax+b=e' or t=log(ax+Db).

da dy dydt dy a

dy
b)— =aDy.
i.e. (ax+ )dx aDy.

Then if D = —
MUY =0r dx  dr dx di ax+b
d_zy_i( a ﬂ)_ —a? dy a d (dy) dr  a (@_ﬂ)
dx2 dx\ax+bdt) (ax+b)? dar (ax+b) dt dx  (ax+b2\de  dr)
,d%y 3y

i.e. (ax+b)? ke =a’D(D- 1)y. Similarly, (ax+ la)3 = aSD(D—l)(D—Z)y and so on.
x2

After making these substitution in (4.12), that results a linear equation with constat coefficients.

dzy dy

+(1+x) +y 2sin (log (1 + x))

Example 4.15. Solve (1 + x)2

Sol. This is a Legendre’s homogeneous linear equation.
Putl+x=elie r=log(l+x),

dy dzy d
hat (1+x)——=D 1+ x)? =D(D-1)y, where D=—.
so that ( +x)dx y and (1+x) a2 ( )y, where ’T.
Then given equation becomes
DD -1)y+Dy+y=2sin(f). = (D2+1)y:231n(t) (4.13)

which is linear equation with constant coefficients.
Its A.E.is D> +1=0whence D = +i. ~.C. E = cycos(t) + cpsin (2).

1 1
AndP I =2———sin(t) =2t—sin(¢) =t [ sin(f)dt = —tcos(1).
DTl ) 2D ()=t [sin (1) (2)

2An French mathematician Adrien Marie Legender (1752-1833) who made important contribution to num-
ber theory, special functions and calculus of variation.
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Hence the solution of (4.13) is y = ¢ cos (#) + c2 sin (t) — tcos (¢).
Put £ =log(1 + x), we get

y = cicos(log(1+x)) + cz2sin (log(1+x)) —log(1 + x) cos (log (1 + x)) as the required solution of
given equation.

Exercise-IV

Que :1 Solve the following differential equation.

d? d
lxzdszl 2xd—y+2y x3 Ans. ¢ x+ crx% +0.5x3
9 d d’y dzy a 1 a 1 .
X8 a3 +2x? d—+2y 10(x+x71) Ans. y=c1x"" + x(c2 cos (log x) + c3 sin (log x))
+5x+2x 'logx
d d
3. x? deZ/—Zxd—i/—4y xt Ans. y=cix*+cox 1 +(0.2)x*logx
4 2d2y dy _ 2 _ 2,1 1.2 2
.X W—3xa+4y—(l+x) Ans. y = (c1+ c2logx)x” + 7 +2x + 5 x"(log x)
5 x@—Zx_1 =x+x? Ans. y=c1x?+cpx b+ 1 (x*-1)logx
dx2 y= y=a 2 3 %/108
6 d—zyx‘l—y=12x‘210gx Ans. y=cilogx+c, +2(logx)?
“dx? djzc ' ! 2
d
7. (5+2x)2 y 6(5+2x) +8y 2(2x+5)2 Ans.y:(5+2x)2[01(5+2x)‘/§+02(5+2x)‘/§
—(5+2x)?
d2
8. (2x+3)2 (2x+3)——12y 6x Ans.y:01(2x+3)”+c‘2(2x+3)b—%(2x+3)
d x?
where a,b:%?7
2 +
2d y d J’ . .
9.(1+x) +(1+x) 4 4 cos (log(1+ x)) Ans. y=cycos(t)+ cpsin(f) +2¢sin(¢)
where t =log (1 + x)
d2
10. (3x+2)2 y+3(3x+2)——36y 3x2+4x+1 Ans.y:cl(3x+2)2+62(3x+2)_2

+ 105 [(3x +2)?log (3x +2)]

Definition 4.16. Polar Co-ordinates: Angle 8 in polar co-ordinate system is directed angle, meaning
angle can be positive or negative. Anticlockwise means positive, clockwise means negative.

In polar co-ordinate system, if r is constant then a circle can be drawn and if 0 is constant then a ray is
obtained.

P(r,0) = P(—r,2k+1)70)
=P(r,(2km)0)

Advantage: Lesser things are required compared to cartesian co-ordinate system.
Disadvantage: In this system, same point has many co-ordinates.
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Definition 4.17. Polar Co-ordinates in R?
Let O be a fixed point in the plane, let OX be a fixed ray in the plane. Then, for every point P in the
plane,

i onecan findr =0 such that OP =r and
ii onecan find@ € [0,2n] such that mZPOX =6.

Here the ordered pair (1,0) is called the polar co-ordinate of the point P. O and OX are called the pole
and the initial line respectively.

If (r,0) is a polar co-ordinate of the point P, then (r,2kn + 0), (=r,m +8), (—r, 2k + 1)n8) are also polar
co-ordinates of the same point P forVke Z.

r is called the radius vector and 0 is called the angular co-ordinates of P.

4.7 Relation between Cartesian and Polar Co-ordinates

Let P(x, y) be a point in the cartesian co-ordinate plane. Take O as the pole and 5)( as the initial line.
Let P(r,0) be the polar co-ordinate of P.

OP =|r]|
= OP?=r?
) (x—O)2+(y—O)2 =r?

= x*+ y2 =r? (4.14)

Also, from the figure,

m/POM =0
= cosf = ’—r“ and sin0 = %

= x=rcosf andy=rsinf (4.15)
Example 4.18. Find the cartesian co-ordinates of the following polar points. Also plot the points
1 (V2,7
22,%
32,
4 (-2,

Sol.
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1 HereA(\/z,%
Sr=v2,0=1%
Now x =rcos6,y=rsind
S.x=vV2cosk = \/5(\/%) and y = v2sin% = \/5(\/%).
Sy =01

2 Here A(2,Z%)
r=2,0= %
Now x =rcosf,y =rsinf
X = 2cos% = 2(?) and y = 2sin% = 2(%)_
() =(V3,1).

3 Here A(2,E£)
Sr=2,0=5
Now x =rcosf,y =rsinf
s.x=2cosZ =2(3) and y = 2sin -~ :2(_§),

~(x, ) =0,-V3).

4 Here A(-2, _TH

Sr==2,0=

Now x =rcos6,y=rsinfd
Cx=— - _ _o(L = _2gin=k = —2(—L
S.X=-2c08 = 2(\/2) and y = —2sin 7 = —2( \/5).

S () = (=V2,V2).
Example 4.19. Find polar co-ordinates of following cartesian points.
11,1
2 (V3,1
3 (-V3,-1)
4 (-2,-2)
Sol.

1 Here(x,y)=(1,1) = x=1,y=1.N0wxz+y2=r2 = r2=1+1 = r=v2.
Now cos0 = = andsin@z%.

. -1 ing = L 7
..cosﬁ—fzandsmﬂ—\/E.Hencee—4.
o (n0) = (V2,5).

2 Here(x,y)=(V3,1) = x=v3,y=1. Nowx*+y*>=1r?> = r>=3+1 = r=2.
Nowcosﬁz’fandsinﬁz%.
.cosf = ‘/7§ andsin0 = % Hence8 = %.
L) =2,%).
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3 Here(x,y)=(-v3,-1) = x=-V3,y=-1. Nowx*+y*=1r> = r?=3+1 = r=2.
Nowcos@=§andsin0=¥.

.cosf = —‘/7§ andsinf = —%. Hence0 = %”.
~(r0)=(2,1).

4 Here(x,y)=(-2,-2) = x=-2,y=-2. Nowx*>+y>=1r> = r’=4+4 = r=2V2.
Nowcos@=§andsin0=%.
. —__2_ ; —__2 . —_1 s —_1 — o
.cosf = N andsinf = 2ﬂ...cosH— ﬂand_ .sinf = \/E.Hence(?— A

S0 =2v2, 3.
Theorem 4.20. Find distance formula in polar co-ordinate system in R?.

Proof. Let A(r1,6;) and (r,02) are two points in polar co-ordinate systems.
The cartesian co-ordinates of A and B are A(rj cos0;,r;sinf;), B(rpcosf,,r,sinf,). Now

AB= \/(rl c0sB; — 1 c0s0)2 + (r1 sin0y — o sin )2

= \/rl2 cos? 6 — 2111, c0861 €080, + 15 cos? 0 + 1 sin® 01 + ra sin® 0, — 2r 12 sinb sinb,

= \/rl2 + 12 —2r112(c0s0; cosBs +sinb sinb,)

AB = \/rl2 +12—=2r11r2c08(01 — 6>)

Theorem 4.21. Obtain the formula for the area of A ABC in polar co-ordinate system.

Proof. Let A(ry,61),B(r2,0,) and C(r3,603) be the vertices of the AABC. Hence the cartesian co-
ordinate A, B and C are A(r; cosf;,r;sin6,), B(rpcosfs, r2sinfy) and C(r3 cosfs, r3sinfs).

ricosf; risinf; 1
AABC = % rocosfy r1psinfy 1
rscosfs rzsinfs; 1

Theorem 4.22. Obtain the equation of line passing through A(r/ —1,601) and B(r»,0>).

Proof. The cartesian co-ordinates of Aand B are A(r; cos61,r;sinf,), B(r2 cos6s, rosinf,). The carte-
sian equation of AB s

x y 1

x1 yi 1]=0

X2 Yo 1
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In polar co-ordinates, the equation of AB is,

rcosf rsinf 1
ricosf; rysinf; 1
rocosfy rysinf, 1

=0

= (r;cosOirysinfy — rirs cosf,sinf;) — (r cosOro sinfs — rro cosf, sinB) + (rry cosfsinfy — rrycosf; sinf) =0
= r11re8in(@, —61) — rrosin(@, —0) + rrysin(@; —0) =0
_ sin(f, —6;) _ sin(6, —0) 3 sin(0; — 0)

r mn o
sin(@; —0,) sin(@—-6,) sin(@-6,)
g = —_
r r ra

is the polar equation of a line passing through A(ry,60;) and B(r2,0,).
Theorem 4.23. Obtain the polar equation of a line in p — a form.

Proof. Let p be the perpendicular distance from the pole to a line L in the polar plane. Draw OM L
L,MeL.Let mZ/MOX = a. The polar co-ordinates of M is M(p, a).

Let P(r,0) be a point on the line L other than M.

.. OP distance is r and mZPOX =0.

S.mZLPOM=0—-aora—-0=+0—-a=1|0-al. From the right-angled APOM,

oM
cos(ZPOM) = —
opr

— OM = OPcos(x0—a)

= p=rcos(@—a) (. cosd=cos(—0))

which is the required equation.

4.8 Deductions:

1 If O€ L, then P = O. Hence rcos(f — a) = 0. That is if pole is on line L, then r cos(f —a) =0 is
the equation of line passing through pole.

2 IfLL O(—))(, then a = 0. Hence p = r cos(6 - 0).
..p=rcosf.

3IfL| 5(, then a = % Hence p =rcos(0 - %) = rsin6. Equation of line will be p = rsinf.
4 If L= OX, then p =0and a = 7. Hence the equation of line will be rsin = 0.

Example 4.24. Prove that the points (6,0), (3, %i) and (-3, ) are non-collinear.
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Sol. The polar equation of a line passing through (6,0), (3, %) and (-3, &) is,

rcos@ rsinf 1 6(1) 6(0) 1
ricosf, rysinf; 1 |= 3(%) 3(\/75) 1
. . x
rpcosfy rysinf, 1 -3 -3(%) 1
6 0 1
_| 3 V3
E s
3 3
-3 33 1
6 0 1
_1| 3 V3
=13 38 1
0 0 2
=2(18%)
=18V3

.. the given points are non-collinear

Example 4.25. Obtain the polar co-ordinates of the foot of



